Efficient maximum approximated likelihood inference for Tukey’s g-and-h distribution
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2015.06.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Degen, Matthias & Embrechts, Paul & Lambrigger, Dominik D., 2007. "The Quantitative Modeling of Operational Risk: Between G-and-H and EVT," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 265-291, November.
- He, Yulei & Raghunathan, Trivellore E., 2006. "Tukey's gh Distribution for Multiple Imputation," The American Statistician, American Statistical Association, vol. 60, pages 251-256, August.
- Yulei He & Trivellore E. Raghunathan, 2012. "Multiple imputation using multivariate gh transformations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(10), pages 2177-2198, June.
- Ganggang Xu & Suojin Wang & Jianhua Z. Huang, 2014. "Focused information criterion and model averaging based on weighted composite quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 365-381, June.
- Xu, Yihuan & Iglewicz, Boris & Chervoneva, Inna, 2014. "Robust estimation of the parameters of g-and-h distributions, with applications to outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 66-80.
- Rayner, G. D. & MacGillivray, H. L., 2002. "Weighted quantile-based estimation for a class of transformation distributions," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 401-433, June.
- M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
- Kabir K. Dutta & David F. Babbel, 2002. "On Measuring Skewness and Kurtosis in Short Rate Distributions: The Case of the US Dollar London Inter Bank Offer Rates," Center for Financial Institutions Working Papers 02-25, Wharton School Center for Financial Institutions, University of Pennsylvania.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- W. D. Walls & Jordi McKenzie, 2020.
"Black swan models for the entertainment industry with an application to the movie business,"
Empirical Economics, Springer, vol. 59(6), pages 3019-3032, December.
- W. D. Walls & J. McKenzie, "undated". "Black Swan Models for the Entertainment Industry with an Application to the Movie Business," Working Papers 2018-04, Department of Economics, University of Calgary, revised 26 Jan 2018.
- Lorenzo Ricci & Vincenzo Verardi & Catherine Vermandele, 2016. "A Highly Efficient Regression Estimator for Skewed and/or Heavy-tailed Distributed Errors," Working Papers 19, European Stability Mechanism.
- Marco Bee & Julien Hambuckers & Flavio Santi & Luca Trapin, 2021. "Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach," Computational Statistics, Springer, vol. 36(3), pages 2177-2200, September.
- Acosta, Jonathan & Alegría, Alfredo & Osorio, Felipe & Vallejos, Ronny, 2021. "Assessing the effective sample size for large spatial datasets: A block likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
- Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
- Vincenzo Verardi, 2018. "A sign and rank based semiparametrically efficient estimator for regression analysis," London Stata Conference 2018 21, Stata Users Group.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Yihuan & Iglewicz, Boris & Chervoneva, Inna, 2014. "Robust estimation of the parameters of g-and-h distributions, with applications to outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 66-80.
- Gareth W. Peters & Wilson Ye Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-Moments," Risks, MDPI, vol. 4(2), pages 1-41, May.
- Gareth W. Peters & Wilson Y. Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-moments," Papers 1603.01041, arXiv.org.
- Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
- Marco Geraci & Alexander McLain, 2018. "Multiple Imputation for Bounded Variables," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 919-940, December.
- Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
- M. Bee & J. Hambuckers & L. Trapin, 2019.
"Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach,"
Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1255-1266, August.
- Marco Bee & Julien Hambuckers & Luca Trapin, 2018. "Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach," DEM Working Papers 2018/08, Department of Economics and Management.
- Marco Bee & Julien Hambuckers & Flavio Santi & Luca Trapin, 2021. "Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach," Computational Statistics, Springer, vol. 36(3), pages 2177-2200, September.
- Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
- Paul T. von Hippel, 2013. "Should a Normal Imputation Model be Modified to Impute Skewed Variables?," Sociological Methods & Research, , vol. 42(1), pages 105-138, February.
- Luiz Vitiello & Ser-Huang Poon, 2022. "Option pricing with random risk aversion," Review of Quantitative Finance and Accounting, Springer, vol. 58(4), pages 1665-1684, May.
- Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
- Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
- M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
- Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
- Dominik D. Lambrigger & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "The Quantification of Operational Risk using Internal Data, Relevant External Data and Expert Opinions," Papers 0904.1361, arXiv.org.
- Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Arthur Pewsey, 2018. "Parametric bootstrap edf-based goodness-of-fit testing for sinh–arcsinh distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 147-172, March.
- Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
- Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
More about this item
Keywords
Approximated likelihood ratio test; Computationally efficient; Maximum approximated likelihood estimator; Skewness; Tukey’s g-and-h distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:91:y:2015:i:c:p:78-91. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.