IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v4y2016i2p14-d70470.html
   My bibliography  Save this article

Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-Moments

Author

Listed:
  • Gareth W. Peters

    (Department of Statistical Science, University College London, London WC1E 6BT, UK
    Oxford-Man Institute, Oxford University, Oxford OX2 6ED, UK
    System Risk Center, London School of Economics, London WC2A 2AE, UK)

  • Wilson Ye Chen

    (Discipline of Business Analytics, The University of Sydney, Sydney 2006, Australia)

  • Richard H. Gerlach

    (Discipline of Business Analytics, The University of Sydney, Sydney 2006, Australia)

Abstract

This paper discusses different classes of loss models in non-life insurance settings. It then overviews the class of Tukey transform loss models that have not yet been widely considered in non-life insurance modelling, but offer opportunities to produce flexible skewness and kurtosis features often required in loss modelling. In addition, these loss models admit explicit quantile specifications which make them directly relevant for quantile based risk measure calculations. We detail various parameterisations and sub-families of the Tukey transform based models, such as the g-and-h, g-and-k and g-and-j models, including their properties of relevance to loss modelling. One of the challenges that are amenable to practitioners when fitting such models is to perform robust estimation of the model parameters. In this paper we develop a novel, efficient, and robust procedure for estimating the parameters of this family of Tukey transform models, based on L-moments. It is shown to be more efficient than the current state of the art estimation methods for such families of loss models while being simple to implement for practical purposes.

Suggested Citation

  • Gareth W. Peters & Wilson Ye Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-Moments," Risks, MDPI, vol. 4(2), pages 1-41, May.
  • Handle: RePEc:gam:jrisks:v:4:y:2016:i:2:p:14-:d:70470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/4/2/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/4/2/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peters, Gareth W. & Shevchenko, Pavel V. & Wüthrich, Mario V., 2009. "Model Uncertainty in Claims Reserving within Tweedie's Compound Poisson Models," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 1-33, May.
    2. Gareth W. Peters & Pavel Shevchenko & Mark Young & Wendy Yip, 2011. "Analytic Loss Distributional Approach Model for Operational Risk from the alpha-Stable Doubly Stochastic Compound Processes and Implications for Capital Allocation," Papers 1102.3582, arXiv.org.
    3. Cummins, J. David & Dionne, Georges & McDonald, James B. & Pritchett, B. Michael, 1990. "Applications of the GB2 family of distributions in modeling insurance loss processes," Insurance: Mathematics and Economics, Elsevier, vol. 9(4), pages 257-272, December.
    4. Matthias Fischer, 2010. "Generalized Tukey-type distributions with application to financial and teletraffic data," Statistical Papers, Springer, vol. 51(1), pages 41-56, January.
    5. Chan, Jennifer S.K. & Boris Choy, S.T. & Makov, Udi E., 2008. "Robust Bayesian Analysis of Loss Reserves Data Using the Generalized-t Distribution," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 207-230, May.
    6. Peters, Gareth W. & Shevchenko, Pavel V. & Young, Mark & Yip, Wendy, 2011. "Analytic loss distributional approach models for operational risk from the α-stable doubly stochastic compound processes and implications for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 565-579.
    7. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Model uncertainty in claims reserving within Tweedie's compound Poisson models," Papers 0904.1483, arXiv.org.
    8. Degen, Matthias & Embrechts, Paul & Lambrigger, Dominik D., 2007. "The Quantitative Modeling of Operational Risk: Between G-and-H and EVT," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 265-291, November.
    9. Elamir, Elsayed A. H. & Seheult, Allan H., 2003. "Trimmed L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 43(3), pages 299-314, July.
    10. Dong, A.X.D. & Chan, J.S.K., 2013. "Bayesian analysis of loss reserving using dynamic models with generalized beta distribution," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 355-365.
    11. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    12. Xu, Yihuan & Iglewicz, Boris & Chervoneva, Inna, 2014. "Robust estimation of the parameters of g-and-h distributions, with applications to outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 66-80.
    13. Kabir K. Dutta & David F. Babbel, 2002. "On Measuring Skewness and Kurtosis in Short Rate Distributions: The Case of the US Dollar London Inter Bank Offer Rates," Center for Financial Institutions Working Papers 02-25, Wharton School Center for Financial Institutions, University of Pennsylvania.
    14. Kabir Dutta & Jason Perry, 2006. "A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital," Working Papers 06-13, Federal Reserve Bank of Boston.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Bee & Julien Hambuckers & Luca Trapin, 2019. "An improved approach for estimating large losses in insurance analytics and operational risk using the g-and-h distribution," DEM Working Papers 2019/11, Department of Economics and Management.
    2. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01391091, HAL.
    3. Marco Bee, 2022. "The truncated g-and-h distribution: estimation and application to loss modeling," Computational Statistics, Springer, vol. 37(4), pages 1771-1794, September.
    4. Gareth W. Peters & Pavel V. Shevchenko & Bertrand Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Papers 1607.02319, arXiv.org, revised Sep 2016.
    5. Marco Bee & Julien Hambuckers & Flavio Santi & Luca Trapin, 2021. "Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach," Computational Statistics, Springer, vol. 36(3), pages 2177-2200, September.
    6. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Post-Print halshs-01391091, HAL.
    7. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2019. "Quantile Diffusions for Risk Analysis," Papers 1912.10866, arXiv.org, revised Sep 2021.
    8. Wilson Ye Chen & Gareth W. Peters & Richard H. Gerlach & Scott A. Sisson, 2017. "Dynamic Quantile Function Models," Papers 1707.02587, arXiv.org, revised May 2021.
    9. Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
    10. Gareth W. Peters & Pavel V. Shevchenko & Bertrand K. Hassani & Ariane Chapelle, 2016. "Should the advanced measurement approach be replaced with the standardized measurement approach for operational risk?," Documents de travail du Centre d'Economie de la Sorbonne 16065, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gareth W. Peters & Wilson Y. Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-moments," Papers 1603.01041, arXiv.org.
    2. Alice X. D. Dong & Jennifer S. K. Chan & Gareth W. Peters, 2014. "Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression," Papers 1402.2492, arXiv.org.
    3. Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
    4. Boratyńska, Agata, 2017. "Robust Bayesian estimation and prediction of reserves in exponential model with quadratic variance function," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 135-140.
    5. Marco Bee & Julien Hambuckers & Flavio Santi & Luca Trapin, 2021. "Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach," Computational Statistics, Springer, vol. 36(3), pages 2177-2200, September.
    6. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    7. Peters, Gareth W. & Shevchenko, Pavel V. & Young, Mark & Yip, Wendy, 2011. "Analytic loss distributional approach models for operational risk from the α-stable doubly stochastic compound processes and implications for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 565-579.
    8. Chan Jennifer So Kuen & Ng Kok-Haur & Nitithumbundit Thanakorn & Peiris Shelton, 2019. "Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-22, April.
    9. Xu, Ganggang & Genton, Marc G., 2015. "Efficient maximum approximated likelihood inference for Tukey’s g-and-h distribution," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 78-91.
    10. Marco Bee, 2022. "The truncated g-and-h distribution: estimation and application to loss modeling," Computational Statistics, Springer, vol. 37(4), pages 1771-1794, September.
    11. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    12. M. Bee & J. Hambuckers & L. Trapin, 2019. "Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1255-1266, August.
    13. Marco Bee & Julien Hambuckers & Luca Trapin, 2019. "An improved approach for estimating large losses in insurance analytics and operational risk using the g-and-h distribution," DEM Working Papers 2019/11, Department of Economics and Management.
    14. Gareth W. Peters & Rodrigo S. Targino & Pavel V. Shevchenko, 2013. "Understanding Operational Risk Capital Approximations: First and Second Orders," Papers 1303.2910, arXiv.org.
    15. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    16. Benjamin Avanzi & Gregory Clive Taylor & Phuong Anh Vu & Bernard Wong, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Papers 2004.06880, arXiv.org.
    17. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    18. Erengul Dodd & George Streftaris, 2017. "Prediction of settlement delay in critical illness insurance claims by using the generalized beta of the second kind distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 273-294, February.
    19. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.
    20. Xiaolin Luo & Pavel V. Shevchenko, 2012. "Bayesian Model Choice of Grouped t-Copula," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1097-1119, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:4:y:2016:i:2:p:14-:d:70470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.