IDEAS home Printed from https://ideas.repec.org/p/trn/utwprg/2018-08.html
   My bibliography  Save this paper

Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach

Author

Listed:
  • Marco Bee
  • Julien Hambuckers
  • Luca Trapin

Abstract

TThe g-and-h distribution is a flexible model with desirable theoretical properties. Especially, it is able to handle well the complex behavior of loss data and it is suitable for VaR estimation when large skewness and kurtosis are at stake. However, parameter estimation is di cult, because the density cannot be written in closed form. In this paper we develop an indirect inference method using the skewed- t distribution as instrumental model. We show that the skewed-t is a well suited auxiliary model and study the numerical issues related to its implementation. A Monte Carlo analysis and an application to operational losses suggest that the indirect inference estimators of the parameters and of the VaR outperform the quantile-based estimators.

Suggested Citation

  • Marco Bee & Julien Hambuckers & Luca Trapin, 2018. "Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach," DEM Working Papers 2018/08, Department of Economics and Management.
  • Handle: RePEc:trn:utwprg:2018/08
    as

    Download full text from publisher

    File URL: https://www.economia.unitn.it/alfresco/download/workspace/SpacesStore/038526f8-371d-4311-9c80-99b1ca49126d/DEM2018_08.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Degen, Matthias & Embrechts, Paul & Lambrigger, Dominik D., 2007. "The Quantitative Modeling of Operational Risk: Between G-and-H and EVT," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 265-291, November.
    2. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    3. Julien Hambuckers & Andreas Groll & Thomas Kneib, 2018. "Understanding the economic determinants of the severity of operational losses: A regularized generalized Pareto regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 898-935, September.
    4. Rene Garcia & Eric Renault & David Veredas, 2011. "Estimation of stable distributions with indirect inference," ULB Institutional Repository 2013/136186, ULB -- Universite Libre de Bruxelles.
    5. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
    6. Andreas Jobst, 2007. "Consistent Quantitative Operational Risk Measurement and Regulation: Challenges of Model Specification, Data Collection and Loss Reporting," IMF Working Papers 2007/254, International Monetary Fund.
    7. repec:ulb:ulbeco:2013/136280 is not listed on IDEAS
    8. Dominicy, Yves & Veredas, David, 2013. "The method of simulated quantiles," Journal of Econometrics, Elsevier, vol. 172(2), pages 235-247.
    9. Giuseppe Galloppo & Alessandro Rogora, 2011. "What Has Worked In Operational Risk?," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 5(3), pages 1-17.
    10. Kabir K. Dutta & David F. Babbel, 2002. "On Measuring Skewness and Kurtosis in Short Rate Distributions: The Case of the US Dollar London Inter Bank Offer Rates," Center for Financial Institutions Working Papers 02-25, Wharton School Center for Financial Institutions, University of Pennsylvania.
    11. Kabir Dutta & Jason Perry, 2006. "A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital," Working Papers 06-13, Federal Reserve Bank of Boston.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Bee & Julien Hambuckers & Luca Trapin, 2019. "An improved approach for estimating large losses in insurance analytics and operational risk using the g-and-h distribution," DEM Working Papers 2019/11, Department of Economics and Management.
    2. Marco Bee, 2022. "The truncated g-and-h distribution: estimation and application to loss modeling," Computational Statistics, Springer, vol. 37(4), pages 1771-1794, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Bee, 2022. "The truncated g-and-h distribution: estimation and application to loss modeling," Computational Statistics, Springer, vol. 37(4), pages 1771-1794, September.
    2. Matteo Barigozzi & Roxana Halbleib & David Veredas, 2012. "Which model to match?," Working Papers 1229, Banco de España.
    3. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
    4. Marco Bee & Julien Hambuckers & Flavio Santi & Luca Trapin, 2021. "Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach," Computational Statistics, Springer, vol. 36(3), pages 2177-2200, September.
    5. Calzolari, Giorgio & Halbleib, Roxana & Parrini, Alessandro, 2014. "Estimating GARCH-type models with symmetric stable innovations: Indirect inference versus maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 158-171.
    6. Marco Bee & Julien Hambuckers & Luca Trapin, 2019. "An improved approach for estimating large losses in insurance analytics and operational risk using the g-and-h distribution," DEM Working Papers 2019/11, Department of Economics and Management.
    7. Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
    8. Gareth W. Peters & Wilson Ye Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-Moments," Risks, MDPI, vol. 4(2), pages 1-41, May.
    9. Gareth W. Peters & Wilson Y. Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-moments," Papers 1603.01041, arXiv.org.
    10. Stelios Arvanitis, 2013. "On the Existence of Strongly Consistent Indirect Estimators When the Binding Function Is Compact Valued," Journal of Mathematics, Hindawi, vol. 2013, pages 1-14, November.
    11. Lombardi, Marco J. & Veredas, David, 2009. "Indirect estimation of elliptical stable distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2309-2324, April.
    12. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    13. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.
    14. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    15. Dominicy, Yves & Veredas, David, 2013. "The method of simulated quantiles," Journal of Econometrics, Elsevier, vol. 172(2), pages 235-247.
    16. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
    17. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
    18. Xu, Ganggang & Genton, Marc G., 2015. "Efficient maximum approximated likelihood inference for Tukey’s g-and-h distribution," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 78-91.
    19. Di Iorio, Francesca & Calzolari, Giorgio, 2006. "Discontinuities in indirect estimation: An application to EAR models," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2124-2136, April.
    20. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.

    More about this item

    Keywords

    Value-at-Risk; g-and-h distribution; loss model; indirect infer- ence; simulation; intractable likelihood;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trn:utwprg:2018/08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: roberto.gabriele@unitn.it (email available below). General contact details of provider: https://edirc.repec.org/data/detreit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.