IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v27y2018i1d10.1007_s11749-017-0538-2.html
   My bibliography  Save this article

Parametric bootstrap edf-based goodness-of-fit testing for sinh–arcsinh distributions

Author

Listed:
  • Arthur Pewsey

    (University of Extremadura)

Abstract

Four-parameter sinh–arcsinh classes provide flexible distributions with which to model skew, as well as light- or heavy-tailed, departures from a symmetric base distribution. A quantile-based method of estimating their parameters is proposed and the resulting estimates advocated as starting values from which to initiate maximum likelihood estimation. Parametric bootstrap edf-based goodness-of-fit tests for sinh–arcsinh distributions are proposed, and their operating characteristics for small- to medium-sized samples explored in Monte Carlo experiments. The developed methodology is illustrated in the analysis of data on the body mass index of athletes and the depth of snow on an Antarctic ice floe.

Suggested Citation

  • Arthur Pewsey, 2018. "Parametric bootstrap edf-based goodness-of-fit testing for sinh–arcsinh distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 147-172, March.
  • Handle: RePEc:spr:testjl:v:27:y:2018:i:1:d:10.1007_s11749-017-0538-2
    DOI: 10.1007/s11749-017-0538-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-017-0538-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-017-0538-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    2. Arthur Pewsey & Toshihiro Abe, 2015. "The sinh-arcsinhed logistic family of distributions: properties and inference," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 573-594, June.
    3. Matsumoto, Ken'ichi & Voudouris, Vlasios & Stasinopoulos, Dimitrios & Rigby, Robert & Di Maio, Carlo, 2012. "Exploring crude oil production and export capacity of the OPEC Middle East countries," Energy Policy, Elsevier, vol. 48(C), pages 820-828.
    4. Winfried Stute & Wenceslao Manteiga & Manuel Quindimil, 1993. "Bootstrap based goodness-of-fit-tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 40(1), pages 243-256, December.
    5. Jones, M. C. & Rosco, J. F. & Pewsey, Arthur, 2011. "Skewness-Invariant Measures of Kurtosis," The American Statistician, American Statistical Association, vol. 65(2), pages 89-95.
    6. Pingel, Ronnie, 2014. "Some approximations of the logistic distribution with application to the covariance matrix of logistic regression," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 63-68.
    7. Arthur Pewsey, 2000. "Problems of inference for Azzalini's skewnormal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 859-870.
    8. McKeague, Ian W., 2015. "Central limit theorems under special relativity," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 149-155.
    9. Voudouris, Vlasios & Stasinopoulos, Dimitrios & Rigby, Robert & Di Maio, Carlo, 2011. "The ACEGES laboratory for energy policy: Exploring the production of crude oil," Energy Policy, Elsevier, vol. 39(9), pages 5480-5489, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    3. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    4. Klabunde, Anna, 2014. "Computational Economic Modeling of Migration," Ruhr Economic Papers 471, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    5. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    6. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    7. Lee, Sangyeol & Oh, Haejune, 2015. "Entropy test and residual empirical process for autoregressive conditional duration models," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 1-12.
    8. Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    9. Zacharias Psaradakis & Marián Vávra, 2017. "Normality Tests for Dependent Data: Large-Sample and Bootstrap Approaches," Birkbeck Working Papers in Economics and Finance 1706, Birkbeck, Department of Economics, Mathematics & Statistics.
    10. Fernanda De Bastiani & Robert A. Rigby & Dimitrios M. Stasinopoulous & Audrey H.M.A. Cysneiros & Miguel A. Uribe-Opazo, 2018. "Gaussian Markov random field spatial models in GAMLSS," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 168-186, January.
    11. Mohsen Maleki & Darren Wraith & Reinaldo B. Arellano-Valle, 2019. "A flexible class of parametric distributions for Bayesian linear mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 543-564, June.
    12. Loperfido, Nicola, 2020. "Some remarks on Koziol’s kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    13. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    14. David Elal-Olivero & Juan F. Olivares-Pacheco & Osvaldo Venegas & Heleno Bolfarine & Héctor W. Gómez, 2020. "On Properties of the Bimodal Skew-Normal Distribution and an Application," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    15. Almansoori, Ali, 2014. "The influence of South Korean energy policy on OPEC oil exports," Energy Policy, Elsevier, vol. 67(C), pages 572-582.
    16. Yang, Yang & Liu, Zhen & Saydaliev, Hayot Berk & Iqbal, Sajid, 2022. "Economic impact of crude oil supply disruption on social welfare losses and strategic petroleum reserves," Resources Policy, Elsevier, vol. 77(C).
    17. Székely, Gábor J. & Rizzo, Maria L., 2004. "Mean distance test of Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 241-247, April.
    18. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    19. Graciela Boente & Daniela Rodriguez & Wenceslao González Manteiga, 2014. "Goodness-of-fit Test for Directional Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 259-275, March.
    20. Kheifets, Igor & Velasco, Carlos, 2017. "New goodness-of-fit diagnostics for conditional discrete response models," Journal of Econometrics, Elsevier, vol. 200(1), pages 135-149.
    21. Balakrishnan, Narayanaswamy & Ristić, Miroslav M., 2016. "Multivariate families of gamma-generated distributions with finite or infinite support above or below the diagonal," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 194-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:27:y:2018:i:1:d:10.1007_s11749-017-0538-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.