IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v71y2013i2p157-173.html
   My bibliography  Save this article

Robust designs for multivariate logistic regression

Author

Listed:
  • Sanjoy Sinha

Abstract

In this paper, the author investigates optimal designs for multivariate binary regression models used in many clinical experiments. As the computation of a joint likelihood for multiple binary outcomes is often tedious, the author proposes and explores a pseudo-likelihood approach for choosing an optimal design under minimal parametric assumptions. The proposed design is considered robust in the sense that it provides estimators that are almost as efficient as those obtained from D-optimal designs under correctly specified likelihood functions and it can provide more efficient estimators as compared to D-optimal designs under misspecified likelihood functions. The asymptotic relative efficiencies of the maximum pseudo-likelihood estimators with respect to the exact maximum likelihood estimators are investigated. Monte Carlo simulations are carried out to explore the finite-sample properties of the maximum pseudo-likelihood estimators obtained under the proposed design scheme. The method is also illustrated in an example using actual data from a clinical study. Copyright Sapienza Università di Roma 2013

Suggested Citation

  • Sanjoy Sinha, 2013. "Robust designs for multivariate logistic regression," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 157-173, September.
  • Handle: RePEc:spr:metron:v:71:y:2013:i:2:p:157-173
    DOI: 10.1007/s40300-013-0010-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40300-013-0010-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40300-013-0010-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adewale, Adeniyi J. & Xu, Xiaojian, 2010. "Robust designs for generalized linear models with possible overdispersion and misspecified link functions," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 875-890, April.
    2. Thomas Schmelter, 2007. "The Optimality of Single-group Designs for Certain Mixed Models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(2), pages 183-193, February.
    3. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    4. Cong Han & Kathryn Chaloner, 2004. "Bayesian Experimental Design for Nonlinear Mixed-Effects Models with Application to HIV Dynamics," Biometrics, The International Biometric Society, vol. 60(1), pages 25-33, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    2. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    3. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    4. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    5. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    6. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    7. Ayouz, Mourad K. & Remaud, Herve, 2003. "The Internationalization Determinants Of The Small Agro-Food Firms: Hypotheses And Statistical Tests," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 5(2), pages 1-27.
    8. Broze, Laurence & Gourieroux, Christian, 1998. "Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators," Journal of Econometrics, Elsevier, vol. 85(1), pages 75-98, July.
    9. Sridhar, Shrihari & Naik, Prasad A. & Kelkar, Ajay, 2017. "Metrics unreliability and marketing overspending," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 761-779.
    10. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    12. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    13. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.
    14. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    15. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    16. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    17. Özlem Onaran & Engelbert Stockhammer, 2006. "The effect of FDI and foreign trade on wages in the Central and Eastern European Countries in the post-transition era: A sectoral analysis," Department of Economics Working Papers wuwp094, Vienna University of Economics and Business, Department of Economics.
    18. Pan, Wei & Louis, Thomas A., 1999. "Two semi-parametric empirical Bayes estimators," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 185-196, April.
    19. Frank X. Zhang, 2003. "What did the credit market expect of Argentina default? Evidence from default swap data," Finance and Economics Discussion Series 2003-25, Board of Governors of the Federal Reserve System (U.S.).
    20. B. Praag & T. Dijkstra & J. Velzen, 1985. "Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 25-36, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:71:y:2013:i:2:p:157-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.