IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i4p999-1005.html
   My bibliography  Save this article

Easily simulated multivariate binary distributions with given positive and negative correlations

Author

Listed:
  • Oman, Samuel D.

Abstract

We consider the problem of defining a multivariate distribution of binary variables, with given first two moments, from which values can be easily simulated. Oman and Zucker [Oman, S.D., Zucker, D.M., 2001. Modelling and generating correlated binary variables. Biometrika 88, 287-290] have done this when the correlation matrix of the binary variables is the Schur product of a parametric correlation matrix appropriate for normal variables (intraclass, moving average or autoregressive), having non-negative entries, with a matrix whose entries comprise the Fréchet upper bounds on the pairwise correlations of the binary variables. We extend their method to include negative correlations; moreover, we extend the range of positive correlations allowed in the moving-average case. We present algorithms for simulation of data from these distributions, and examine the ranges of correlations obtained.

Suggested Citation

  • Oman, Samuel D., 2009. "Easily simulated multivariate binary distributions with given positive and negative correlations," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 999-1005, February.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:999-1005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00559-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Rao Chaganty & Harry Joe, 2006. "Range of correlation matrices for dependent Bernoulli random variables," Biometrika, Biometrika Trust, vol. 93(1), pages 197-206, March.
    2. Guosheng Yin & Yu Shen, 2005. "Adaptive Design and Estimation in Randomized Clinical Trials with Correlated Observations," Biometrics, The International Biometric Society, vol. 61(2), pages 362-369, June.
    3. Molin Wang & John M. Williamson, 2005. "Generalization of the Mantel–Haenszel Estimating Function for Sparse Clustered Binary Data," Biometrics, The International Biometric Society, vol. 61(4), pages 973-981, December.
    4. N. Rao Chaganty & Harry Joe, 2004. "Efficiency of generalized estimating equations for binary responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 851-860, November.
    5. Bahjat F. Qaqish, 2003. "A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations," Biometrika, Biometrika Trust, vol. 90(2), pages 455-463, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zimu Chen & Zhanfeng Wang & Yuan‐chin Ivan Chang, 2020. "Sequential adaptive variables and subject selection for GEE methods," Biometrics, The International Biometric Society, vol. 76(2), pages 496-507, June.
    2. Zhang, Shen & Zhao, Peixin & Li, Gaorong & Xu, Wangli, 2019. "Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 37-52.
    3. Fontana, Roberto & Semeraro, Patrizia, 2018. "Representation of multivariate Bernoulli distributions with a given set of specified moments," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 290-303.
    4. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    5. Xu, Peirong & Zhu, Lixing, 2012. "Estimation for a marginal generalized single-index longitudinal model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 285-299.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontana, Roberto & Semeraro, Patrizia, 2018. "Representation of multivariate Bernoulli distributions with a given set of specified moments," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 290-303.
    2. Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.
    3. Hammill, Bradley G. & Preisser, John S., 2006. "A SAS/IML software program for GEE and regression diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1197-1212, November.
    4. Deng, Yihao & Sabo, Roy T. & Chaganty, N. Rao, 2012. "Multivariate probit analysis of binary familial data using stochastic representations," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 656-663.
    5. Modarres, Reza, 2011. "High-dimensional generation of Bernoulli random vectors," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1136-1142, August.
    6. Roy T. Sabo & N. Rao Chaganty, 2011. "Letter to the Editor of Biometrics on “Joint Regression Analysis for Discrete Longitudinal Data” by Madsen and Fang," Biometrics, The International Biometric Society, vol. 67(4), pages 1669-1670, December.
    7. Hines, R.J. O'Hara & Hines, W.G.S., 2010. "Indices for covariance mis-specification in longitudinal data analysis with no missing responses and with MAR drop-outs," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 806-815, April.
    8. Anestis Touloumis & Alan Agresti & Maria Kateri, 2013. "GEE for Multinomial Responses Using a Local Odds Ratios Parameterization," Biometrics, The International Biometric Society, vol. 69(3), pages 633-640, September.
    9. Sergei Leonov & Bahjat Qaqish, 2020. "Correlated endpoints: simulation, modeling, and extreme correlations," Statistical Papers, Springer, vol. 61(2), pages 741-766, April.
    10. Berman, Oded & Krass, Dmitry & Menezes, Mozart B.C., 2013. "Location and reliability problems on a line: Impact of objectives and correlated failures on optimal location patterns," Omega, Elsevier, vol. 41(4), pages 766-779.
    11. Shults, Justine, 2017. "Simulating longer vectors of correlated binary random variables via multinomial sampling," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 1-11.
    12. Nooraee, Nazanin & Molenberghs, Geert & van den Heuvel, Edwin R., 2014. "GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 70-83.
    13. Krause, Daniel & Scherer, Matthias & Schwinn, Jonas & Werner, Ralf, 2018. "Membership testing for Bernoulli and tail-dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 240-260.
    14. Højsgaard, Søren & Halekoh, Ulrich & Yan, Jun, 2005. "The R Package geepack for Generalized Estimating Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i02).
    15. Jorge A. Sefair & Oscar Guaje & Andrés L. Medaglia, 2021. "A column-oriented optimization approach for the generation of correlated random vectors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 777-808, September.
    16. Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2018. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print hal-04590149, HAL.
    17. Shujie Ma & Yanyuan Ma & Yanqing Wang & Eli S. Kravitz & Raymond J. Carroll, 2017. "A Semiparametric Single-Index Risk Score Across Populations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1648-1662, October.
    18. Tsung-Shan Tsou & Wan-Chen Chen, 2013. "Estimation of intra-cluster correlation coefficient via the failure of Bartlett’s second identity," Computational Statistics, Springer, vol. 28(4), pages 1681-1698, August.
    19. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    20. Nikoloulopoulos, Aristidis K., 2023. "Efficient and feasible inference for high-dimensional normal copula regression models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:999-1005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.