IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v105y2021i2d10.1007_s10182-021-00405-9.html
   My bibliography  Save this article

Inducing a desired value of correlation between two point-scale variables: a two-step procedure using copulas

Author

Listed:
  • Alessandro Barbiero

    (Università degli Studi di Milano)

Abstract

Focusing on point-scale random variables, i.e. variables whose support consists of the first m positive integers, we discuss how to build a joint distribution with pre-specified marginal distributions and Pearson’s correlation $$\rho $$ ρ . After recalling how the desired value $$\rho $$ ρ is not free to vary between $$-1$$ - 1 and $$+1$$ + 1 , but generally ranges a narrower interval, whose bounds depend on the two marginal distributions, we devise a procedure that first identifies a class of joint distributions, based on a parametric family of copulas, having the desired margins, and then adjusts the copula parameter in order to match the desired correlation. The proposed methodology addresses a need which often arises when assessing the performance and robustness of some new statistical technique, i.e. trying to build a huge number of replicates of a given dataset, which satisfy—on average—some of its features (for example, the empirical marginal distributions and the pairwise linear correlations). The proposal shows several advantages, such as—among others—allowing for dependence structures other than the Gaussian and being able to accommodate the copula parameter up to an assigned level of precision for $$\rho $$ ρ with a very small computational cost. Based on this procedure, we also suggest a two-step estimation technique for copula-based bivariate discrete distributions, which can be used as an alternative to full and two-step maximum likelihood estimation. Numerical illustration and empirical evidence are provided through some examples and a Monte Carlo simulation study, involving the CUB distribution and three different copulas; an application to real data is also discussed.

Suggested Citation

  • Alessandro Barbiero, 2021. "Inducing a desired value of correlation between two point-scale variables: a two-step procedure using copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 307-334, June.
  • Handle: RePEc:spr:alstar:v:105:y:2021:i:2:d:10.1007_s10182-021-00405-9
    DOI: 10.1007/s10182-021-00405-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-021-00405-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-021-00405-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, A. J., 1997. "Some simple methods for generating correlated categorical variates," Computational Statistics & Data Analysis, Elsevier, vol. 26(2), pages 133-148, December.
    2. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1, June.
    3. Hakan Demirtas, 2019. "Inducing Any Feasible Level of Correlation to Bivariate Data With Any Marginals," The American Statistician, Taylor & Francis Journals, vol. 73(3), pages 273-277, July.
    4. Alan Agresti & Maria Kateri, 2019. "The class of CUB models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 445-449, September.
    5. Sergei Leonov & Bahjat Qaqish, 2020. "Correlated endpoints: simulation, modeling, and extreme correlations," Statistical Papers, Springer, vol. 61(2), pages 741-766, April.
    6. N. Rao Chaganty & Harry Joe, 2006. "Range of correlation matrices for dependent Bernoulli random variables," Biometrika, Biometrika Trust, vol. 93(1), pages 197-206, March.
    7. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    8. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    9. Qing Xiao, 2017. "Generating correlated random vector involving discrete variables," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1594-1605, February.
    10. Ivy Liu & Alan Agresti, 2005. "The analysis of ordered categorical data: An overview and a survey of recent developments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 1-73, June.
    11. Amatya, Anup & Demirtas, Hakan, 2015. "OrdNor: An R Package for Concurrent Generation of Correlated Ordinal and Normal Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(c02).
    12. Hatzinger, Reinhold & Dittrich, Regina, 2012. "prefmod: An R Package for Modeling Preferences Based on Paired Comparisons, Rankings, or Ratings," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i10).
    13. Yen Lee & David Kaplan, 2018. "Generating Multivariate Ordinal Data via Entropy Principles," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 156-181, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Xisong & Lehnert Thorsten, 2018. "Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 19-46, February.
    2. Quanrui Song & Jianxu Liu & Songsak Sriboonchitta, 2019. "Risk Measurement of Stock Markets in BRICS, G7, and G20: Vine Copulas versus Factor Copulas," Mathematics, MDPI, vol. 7(3), pages 1-16, March.
    3. Nooraee, Nazanin & Molenberghs, Geert & van den Heuvel, Edwin R., 2014. "GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 70-83.
    4. Baruch, Shmuel & Panayides, Marios & Venkataraman, Kumar, 2017. "Informed trading and price discovery before corporate events," Journal of Financial Economics, Elsevier, vol. 125(3), pages 561-588.
    5. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    6. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    7. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    8. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    9. Bambio, Yiriyibin & Bouayad Agha, Salima, 2018. "Land tenure security and investment: Does strength of land right really matter in rural Burkina Faso?," World Development, Elsevier, vol. 111(C), pages 130-147.
    10. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    11. Chao Xu & Jinchuan Ke & Xiaojun Zhao & Xiaofang Zhao, 2020. "Multiscale Quantile Correlation Coefficient: Measuring Tail Dependence of Financial Time Series," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
    12. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    13. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    14. Jorge A. Sefair & Oscar Guaje & Andrés L. Medaglia, 2021. "A column-oriented optimization approach for the generation of correlated random vectors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 777-808, September.
    15. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    16. Raza, Hamid & Wu, Weiou, 2018. "Quantile dependence between the stock, bond and foreign exchange markets – Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 286-296.
    17. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    18. Hachmi Ben Ameur & Zied Ftiti & Fredj Jawadi & Wael Louhichi, 2022. "Measuring extreme risk dependence between the oil and gas markets," Annals of Operations Research, Springer, vol. 313(2), pages 755-772, June.
    19. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    20. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:105:y:2021:i:2:d:10.1007_s10182-021-00405-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.