IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v23y2003i1p38-53.html
   My bibliography  Save this article

Use of Bayesian Markov Chain Monte Carlo Methods to Model Cost-of-Illness Data

Author

Listed:
  • Nicola J. Cooper
  • Alex J. Sutton
  • Miranda Mugford
  • Keith R. Abrams

Abstract

It is well known that the modeling of cost data is often problematic due to the distribution of such data. Commonly observed problems include 1) a strongly right-skewed data distribution and 2) a significant percentage of zero-cost observations. This article demonstrates how a hurdle model can be implemented from a Bayesian perspective by means of Markov Chain Monte Carlo simulation methods using the freely available software WinBUGS. Assessment of model fit is addressed through the implementation of two cross-validation methods. The relative merits of this Bayesian approach compared to the classical equivalent are discussed in detail. To illustrate the methods described, patient-specific nonhealth-care resource-use data from a prospective longitudinal study and the Norfolk Arthritis Register (NOAR) are utilized for 218 individuals with early inflammatory polyarthritis (IP). The NOAR database also includes information on various patient-level covariates.

Suggested Citation

  • Nicola J. Cooper & Alex J. Sutton & Miranda Mugford & Keith R. Abrams, 2003. "Use of Bayesian Markov Chain Monte Carlo Methods to Model Cost-of-Illness Data," Medical Decision Making, , vol. 23(1), pages 38-53, January.
  • Handle: RePEc:sae:medema:v:23:y:2003:i:1:p:38-53
    DOI: 10.1177/0272989X02239653
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X02239653
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X02239653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Chun & Cai, Bo & Wang, Lianming & Lin, Xiaoyan, 2014. "Bayesian semiparametric model for spatially correlated interval-censored survival data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 198-208.
    2. Andrea Gabrio & Michael J. Daniels & Gianluca Baio, 2020. "A Bayesian parametric approach to handle missing longitudinal outcome data in trial‐based health economic evaluations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 607-629, February.
    3. Paul C. Lambert & Lucinda J. Billingham & Nicola J. Cooper & Alex J. Sutton & Keith R. Abrams, 2008. "Estimating the cost‐effectiveness of an intervention in a clinical trial when partial cost information is available: a Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 17(1), pages 67-81, January.
    4. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:23:y:2003:i:1:p:38-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.