Model comparison for Gibbs random fields using noisy reversible jump Markov chain Monte Carlo
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2018.07.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39, January.
- Caimo, Alberto & Friel, Nial, 2014. "Bergm: Bayesian Exponential Random Graphs in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i02).
- Hunter, David R. & Handcock, Mark S. & Butts, Carter T. & Goodreau, Steven M. & Morris, Martina, 2008. "ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i03).
- Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
- Nial Friel & Jason Wyse, 2012. "Estimating the evidence – a review," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 288-308, August.
- Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
- Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
- Ricardo S. Ehlers & Stephen P. Brooks, 2008. "Adaptive Proposal Construction for Reversible Jump MCMC," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 677-690, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alexander Y. Mitrophanov, 2024. "The Arsenal of Perturbation Bounds for Finite Continuous-Time Markov Chains: A Perspective," Mathematics, MDPI, vol. 12(11), pages 1-15, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Javier Sánchez García & Salvador Cruz Rambaud, 2024. "The network econometrics of financial concentration," Review of Managerial Science, Springer, vol. 18(7), pages 2007-2045, July.
- Yaveroğlu, Ömer Nebil & Fitzhugh, Sean M. & Kurant, Maciej & Markopoulou, Athina & Butts, Carter T. & Pržulj, Nataša, 2015. "ergm.graphlets: A Package for ERG Modeling Based on Graphlet Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i12).
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- David I. Hastie & Peter J. Green, 2012. "Model choice using reversible jump Markov chain Monte Carlo," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 309-338, August.
- Jeffrey A. Smith & Jessica Burow, 2020. "Using Ego Network Data to Inform Agent-based Models of Diffusion," Sociological Methods & Research, , vol. 49(4), pages 1018-1063, November.
- Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
- Cody J. Dey & James S. Quinn, 2014. "Individual attributes and self-organizational processes affect dominance network structure in pukeko," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(6), pages 1402-1408.
- Kei, Yik Lun & Chen, Yanzhen & Madrid Padilla, Oscar Hernan, 2023. "A partially separable model for dynamic valued networks," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Ivan Cucco, 2014. "Network-based policies and innovation networks in two Italian regions: a comparison through a social selection model," STUDI ECONOMICI, FrancoAngeli Editore, vol. 2014(114), pages 78-96.
- De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
- Joshua Daniel Loyal & Yuguo Chen, 2020. "Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic," International Statistical Review, International Statistical Institute, vol. 88(2), pages 419-440, August.
- Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022.
"An automated prior robustness analysis in Bayesian model comparison,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
- Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "An automated prior robustness analysis in Bayesian model comparison," CAMA Working Papers 2019-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Johannes Pol, 2019. "Introduction to Network Modeling Using Exponential Random Graph Models (ERGM): Theory and an Application Using R-Project," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 845-875, October.
- Vishesh Karwa & Pavel N. Krivitsky & Aleksandra B. Slavković, 2017. "Sharing social network data: differentially private estimation of exponential family random-graph models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 481-500, April.
- He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.
- Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015.
"Generalized exogenous processes in DSGE: A Bayesian approach,"
SFB 649 Discussion Papers
2015-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Meyer-Gohde, Alexander & Neuhoff, Daniel, 2018. "Generalized exogenous processes in DSGE: A Bayesian approach," IMFS Working Paper Series 125, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Hubin, Aliaksandr & Storvik, Geir, 2018. "Mode jumping MCMC for Bayesian variable selection in GLMM," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 281-297.
- Steven Goodreau & James Kitts & Martina Morris, 2009. "Birds of a feather, or friend of a friend? using exponential random graph models to investigate adolescent social networks," Demography, Springer;Population Association of America (PAA), vol. 46(1), pages 103-125, February.
- Angel Ortiz-Pelaez & Getaneh Ashenafi & Francois Roger & Agnes Waret-Szkuta, 2012. "Can Geographical Factors Determine the Choices of Farmers in the Ethiopian Highlands to Trade in Livestock Markets?," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
- Heaps, Sarah E. & Boys, Richard J. & Farrow, Malcolm, 2014. "Computation of marginal likelihoods with data-dependent support for latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 392-401.
More about this item
Keywords
Bayes factors; Intractable likelihoods; Markov random fields; Noisy MCMC;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:128:y:2018:i:c:p:221-241. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.