Time-efficient estimation of conditional mutual information for variable selection in classification
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2013.10.026
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Maria Iannario, 2010. "On the identifiability of a mixture model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 87-94.
- de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
- Álvarez-Esteban, P.C. & del Barrio, E. & Cuesta-Albertos, J.A. & Matrán, C., 2013. "Searching for a common pooling pattern among several samples," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 1-14.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
- Gennaro Punzo & Rosalia Castellano & Mirko Buonocore, 2018. "Job Satisfaction in the “Big Four” of Europe: Reasoning Between Feeling and Uncertainty Through CUB Models," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(1), pages 205-236, August.
- Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
- Tasos Kalandrakis, 2006. "Roll Call Data and Ideal Points," Wallis Working Papers WP42, University of Rochester - Wallis Institute of Political Economy.
- Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
- Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
- van Dijk, A. & van Rosmalen, J.M. & Paap, R., 2009. "A Bayesian approach to two-mode clustering," Econometric Institute Research Papers EI 2009-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Sayan Chakraborty & Arnab Bhattacharjee & Taps Maiti, 2021. "Structural Factorization of Latent Adjacency Matrix, with an application to Auto Industry Networks," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 185-206, November.
- Stefania Capecchi & Rosaria Simone, 2019. "A Proposal for a Model-Based Composite Indicator: Experience on Perceived Discrimination in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 95-110, January.
- Jose Giovany Babativa-Márquez & José Luis Vicente-Villardón, 2021. "Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
- Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.
- Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
- Julio César Hernández-Sánchez & José Luis Vicente-Villardón, 2017. "Logistic biplot for nominal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 307-326, June.
- Rosaria Simone, 2021. "An accelerated EM algorithm for mixture models with uncertainty for rating data," Computational Statistics, Springer, vol. 36(1), pages 691-714, March.
- Fithian, William & Josse, Julie, 2017. "Multiple correspondence analysis and the multilogit bilinear model," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 87-102.
- Iannario, Maria & Piccolo, Domenico, 2014. "A theorem on CUB models for rank data," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 27-31.
- Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
- Stefania Capecchi & Maria Iannario & Rosaria Simone, 2018. "Well-Being and Relational Goods: A Model-Based Approach to Detect Significant Relationships," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 729-750, January.
- Federica Cugnata & Silvia Salini, 2014. "Model-based approach for importance–performance analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3053-3064, November.
- Romina Gambacorta & Maria Iannario, 2013. "Measuring Job Satisfaction with CUB Models," LABOUR, CEIS, vol. 27(2), pages 198-224, June.
More about this item
Keywords
Variable selection; Conditional mutual information; Discrete data; Parallel algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:105-127. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.