A Bayesian approach to two-mode clustering
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Joost Rosmalen & Patrick Groenen & Javier Trejos & William Castillo, 2009. "Optimization Strategies for Two-Mode Partitioning," Journal of Classification, Springer;The Classification Society, vol. 26(2), pages 155-181, August.
- Han C. & Carlin B. P., 2001. "Markov Chain Monte Carlo Methods for Computing Bayes Factors: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1122-1132, September.
- Jon P. Nelson, 2002. ""Green" Voting And Ideology: Lcv Scores And Roll-Call Voting In The U.S. Senate, 1988-1998," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 518-529, August.
- Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
- Sylvia Fruhwirth-Schnatter, 2004. "Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 143-167, June.
- de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
- Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
- Schepers, Jan & van Mechelen, Iven & Ceulemans, Eva, 2006. "Three-mode partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1623-1642, December.
- Fruhwirth-Schnatter S., 2001. "Markov Chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 194-209, March.
- Govaert, Gérard & Nadif, Mohamed, 2008. "Block clustering with Bernoulli mixture models: Comparison of different approaches," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3233-3245, February.
- Jan Schepers & Eva Ceulemans & Iven Mechelen, 2008. "Selecting Among Multi-Mode Partitioning Models of Different Complexities: A Comparison of Four Model Selection Criteria," Journal of Classification, Springer;The Classification Society, vol. 25(1), pages 67-85, June.
- Wayne DeSarbo & Duncan Fong & John Liechty & M. Kim Saxton, 2004. "A hierarchical bayesian procedure for two-mode cluster analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 547-572, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Eleni Matechou & Ivy Liu & Daniel Fernández & Miguel Farias & Bergljot Gjelsvik, 2016. "Biclustering Models for Two-Mode Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 611-624, September.
- Alessandro Casa & Charles Bouveyron & Elena Erosheva & Giovanna Menardi, 2021. "Co-clustering of Time-Dependent Data via the Shape Invariant Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 626-649, October.
- Aghiles Salah & Mohamed Nadif, 2019. "Directional co-clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 591-620, September.
- Aurore Lomet & Gérard Govaert & Yves Grandvalet, 2018. "Model selection for Gaussian latent block clustering with the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 489-508, September.
- Daniel Fernández & Richard Arnold & Shirley Pledger & Ivy Liu & Roy Costilla, 2019. "Finite mixture biclustering of discrete type multivariate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 117-143, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- David Ardia, 2009.
"Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations,"
Econometrics Journal, Royal Economic Society, vol. 12(1), pages 105-126, March.
- Ardia, David, 2007. "Bayesian Estimation of a Markov-Switching Threshold Asymmetric GARCH Model with Student-t Innovations," DQE Working Papers 6, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 08 Jul 2008.
- Keane, Michael & Stavrunova, Olena, 2016.
"Adverse selection, moral hazard and the demand for Medigap insurance,"
Journal of Econometrics, Elsevier, vol. 190(1), pages 62-78.
- Keane, M. & Stavrunova, O., 2010. "Adverse Selection, Moral Hazard and the Demand for Medigap Insurance," Health, Econometrics and Data Group (HEDG) Working Papers 10/14, HEDG, c/o Department of Economics, University of York.
- Michael Keane & Olena Stavrunova, 2011. "Adverse Selection, Moral Hazard and the Demand for Medigap Insurance," Working Paper Series 167, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
- Michael P. Keane & Olean Stavrunova, 2014. "Adverse Selection, Moral Hazard and the Demand for Medigap Insurance," Economics Papers 2014-W02, Economics Group, Nuffield College, University of Oxford.
- Michael Keane & Olena Stavrunova, 2011. "Adverse Selection, Moral Hazard and the Demand for Medigap Insurance," Working Papers 201119, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Michael P. Keane & Olena Stavrunova, 2012. "Adverse Selection, Moral Hazard and the Demand for Medigap Insurance," Economics Papers 2012-W10, Economics Group, Nuffield College, University of Oxford.
- Yin, Ming, 2015. "Estimating Gaussian Mixture Autoregressive model with Sequential Monte Carlo algorithm: A parallel GPU implementation," MPRA Paper 88111, University Library of Munich, Germany, revised 2018.
- Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014.
"Marginal likelihood for Markov-switching and change-point GARCH models,"
Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
- Luc Luc & Arnaud Dufays & Jeroen V.K. Rombouts, 2011. "Marginal Likelihood for Markov-switching and Change-point Garch Models," CREATES Research Papers 2011-41, Department of Economics and Business Economics, Aarhus University.
- BAUWENS, Luc & DUFAYS, Arnaud & ROMBOUTS, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," LIDAM Reprints CORE 2533, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Arnaud Dufays & Jeroen Rombouts, 2011. "Marginal Likelihood for Markov-Switching and Change-Point Garch Models," CIRANO Working Papers 2011s-72, CIRANO.
- Luc Bauwens & Arnaud Dufays & Jeroen V.K. Rombouts, 2011. "Marginal Likelihood for Markov-Switching and Change-Point GARCH Models," Cahiers de recherche 1138, CIRPEE.
- BAUWENS, Luc & DUFAYS, Arnaud & ROMBOUTS, Jeroen V.K., 2011. "Marginal likelihood for Markov-switching and change-point GARCH models," LIDAM Discussion Papers CORE 2011013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Philippe J. Deschamps, 2008.
"Comparing smooth transition and Markov switching autoregressive models of US unemployment,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 435-462.
- Deschamps, Philippe J., 2007. "Comparing smooth transition and Markov switching autoregressive models of US Unemployment," DQE Working Papers 7, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 04 Jun 2008.
- de Pooter, M.D. & Ravazzolo, F. & Segers, R. & van Dijk, H.K., 2008. "Bayesian near-boundary analysis in basic macroeconomic time series models," Econometric Institute Research Papers EI 2008-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Paap, Richard & Segers, Rene & van Dijk, Dick, 2009.
"Do Leading Indicators Lead Peaks More Than Troughs?,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 528-543.
- Paap, R. & Segers, R. & van Dijk, D.J.C., 2007. "Do leading indicators lead peaks more than troughs?," Econometric Institute Research Papers EI 2007-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2012.
"A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 101-120.
- Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2012. "A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 12-026/4, Tinbergen Institute.
- Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017.
"Autoregressive Moving Average Infinite Hidden Markov-Switching Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.
- Bauwens, Luc & Carpantier, Jean-François & Dufays, Arnaud, 2015. "Autoregressive moving average infinite hidden markov-switching models," LIDAM Discussion Papers CORE 2015007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Post-Print hal-01795051, HAL.
- Luc BAUWENS & Jean-François CARPENTIER & Arnaud DUFAYS, 2017. "Autoregressive moving average infinite hidden Markov-switching models," LIDAM Reprints CORE 2836, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Deschamps, Philippe J., 2012.
"Bayesian estimation of generalized hyperbolic skewed student GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
- Deschamps, Philippe J., 2011. "Bayesian Estimation of Generalized Hyperbolic Skewed Student GARCH Models," DQE Working Papers 16, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 09 Jun 2012.
- Çakmaklı, Cem & Paap, Richard & van Dijk, Dick, 2013.
"Measuring and predicting heterogeneous recessions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2195-2216.
- Cem Cakmakli & Richard Paap & Dick van Dijk, 2011. "Measuring and Predicting Heterogeneous Recessions," Tinbergen Institute Discussion Papers 11-154/4, Tinbergen Institute, revised 15 Nov 2011.
- Cem Cakmakli & Richard Paap & Dick van Dijk, 2012. "Measuring and Predicting Heterogeneous Recessions," Koç University-TUSIAD Economic Research Forum Working Papers 1206, Koc University-TUSIAD Economic Research Forum.
- Jan Schepers & Eva Ceulemans & Iven Mechelen, 2008. "Selecting Among Multi-Mode Partitioning Models of Different Complexities: A Comparison of Four Model Selection Criteria," Journal of Classification, Springer;The Classification Society, vol. 25(1), pages 67-85, June.
- Qian, Hang, 2011. "Bayesian Portfolio Selection in a Markov Switching Gaussian Mixture Model," MPRA Paper 35561, University Library of Munich, Germany.
- Jan Schepers & Hans-Hermann Bock & Iven Mechelen, 2017. "Maximal Interaction Two-Mode Clustering," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 49-75, April.
- J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
- Li, Mingliang & Mumford, Kevin J. & Tobias, Justin L., 2012. "A Bayesian analysis of payday loans and their regulation," Journal of Econometrics, Elsevier, vol. 171(2), pages 205-216.
- Vlad-Cosmin Bulai & Alexandra Horobeț & Lucian Belascu, 2019. "Improving Local Governments’ Financial Sustainability by Using Open Government Data: An Application of High-Granularity Estimates of Personal Income Levels in Romania," Sustainability, MDPI, vol. 11(20), pages 1-11, October.
- Aßmann, Christian & Boysen-Hogrefe, Jens, 2011. "A Bayesian approach to model-based clustering for binary panel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 261-279, January.
- Jan Schepers & Iven Mechelen & Eva Ceulemans, 2011. "The Real-Valued Model of Hierarchical Classes," Journal of Classification, Springer;The Classification Society, vol. 28(3), pages 363-389, October.
- Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012.
"A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
- David Ardia & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2010. "A Comparative Study of Monte Carlo Methods for Efficient Evaluation of Marginal Likelihood," Tinbergen Institute Discussion Papers 10-059/4, Tinbergen Institute.
More about this item
Keywords
MCMC; latent-class model; model-based clustering; two-mode data;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2009-03-28 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:15112. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.