IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v28y2009i1-3p279-293.html
   My bibliography  Save this article

A New Bispectral Test for NonLinear Serial Dependence

Author

Listed:
  • Elena Rusticelli
  • Richard Ashley
  • Estela Bee Dagum
  • Douglas Patterson

Abstract

Nonconstancy of the bispectrum of a time series has been taken as a measure of non-Gaussianity and nonlinear serial dependence in a stochastic process by Subba Rao and Gabr (1980) and by Hinich (1982), leading to Hinich's statistical test of the null hypothesis of a linear generating mechanism for a time series. Hinich's test has the advantage of focusing directly on nonlinear serial dependence—in contrast to subsequent approaches, which actually test for serial dependence of any kind (nonlinear or linear) on data which have been pre-whitened. The Hinich test tends to have low power, however, and (in common with most statistical procedures in the frequency domain) requires the specification of a smoothing or window-width parameter. In this article, we develop a modification of the Hinich bispectral test which substantially ameliorates both of these problems by the simple expedient of maximizing the test statistic over the feasible values of the smoothing parameter. Monte Carlo simulation results are presented indicating that the new test is well sized and has substantially larger power than the original Hinich test against a number of relevant alternatives; the simulations also indicate that the new test preserves the Hinich test's robustness to misspecifications in the identification of a pre-whitening model.

Suggested Citation

  • Elena Rusticelli & Richard Ashley & Estela Bee Dagum & Douglas Patterson, 2009. "A New Bispectral Test for NonLinear Serial Dependence," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 279-293.
  • Handle: RePEc:taf:emetrv:v:28:y:2009:i:1-3:p:279-293
    DOI: 10.1080/07474930802388090
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930802388090
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930802388090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedro JF de Lima, 1996. "Nonlinearities and Nonstationarities in Stock Returns," Economics Working Paper Archive 360, The Johns Hopkins University,Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
    2. Simone Giannerini & Esfandiar Maasoumi & Estela Bee Dagum, 2015. "Entropy testing for nonlinear serial dependence in time series," Biometrika, Biometrika Trust, vol. 102(3), pages 661-675.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Rusticelli & Richard Ashley & Estela Bee Dagum & Douglas Patterson, 2009. "A New Bispectral Test for NonLinear Serial Dependence," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 279-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:28:y:2009:i:1-3:p:279-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.