IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v57y2013i1p645-660.html
   My bibliography  Save this article

On Crevecoeur’s bathtub-shaped failure rate model

Author

Listed:
  • Liu, Junfeng
  • Wang, Yi

Abstract

Crevecoeur (1993) developed a three-parameter bathtub-shaped failure rate model that enjoys nice mathematical properties and justification from engineering perspectives. In this paper, we derive the explicit formulas for the maximum likelihood estimation (MLE) of parameters for his model applied to both non-censored data and right-censored data. Meanwhile, explicit formulas for the MLE of parameters of Xie–Tang–Goh’s model (Xie et al., 2002) are given for both types of data in the paper. The results from using these two models are compared to some real data sets both in terms of AIC values and in terms of how well the intensity is fitted. We also investigate the MLE-based statistical inference including parameter confidence intervals and parameter significance test for both models. Finally, aiming at reliability-related decision-making and predicting the evolution behavior of a system, we report the relations of the reliability characteristics during the improvement phase to those of the steady service phase. A theory of system improvement limit is presented based on Crevecoeur’s failure rate model.

Suggested Citation

  • Liu, Junfeng & Wang, Yi, 2013. "On Crevecoeur’s bathtub-shaped failure rate model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 645-660.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:645-660
    DOI: 10.1016/j.csda.2012.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003052
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cancho, Vicente G. & Louzada-Neto, Franscisco & Barriga, Gladys D.C., 2011. "The Poisson-exponential lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 677-686, January.
    2. Paranaíba, Patrícia F. & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R., 2011. "The beta Burr XII distribution with application to lifetime data," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1118-1136, February.
    3. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    4. Silva, Rodrigo B. & Barreto-Souza, Wagner & Cordeiro, Gauss M., 2010. "A new distribution with decreasing, increasing and upside-down bathtub failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 935-944, April.
    5. Nandi, Swagata & Dewan, Isha, 2010. "An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1559-1569, June.
    6. Yu, Jun-Wu & Tian, Guo-Liang & Tang, Man-Lai, 2008. "Statistical inference and prediction for the Weibull process with incomplete observations," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1587-1603, January.
    7. Chen, Zhenmin, 2000. "A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 155-161, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    2. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    3. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    4. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    5. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    6. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    7. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    8. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    9. Nanami Taketomi & Kazuki Yamamoto & Christophe Chesneau & Takeshi Emura, 2022. "Parametric Distributions for Survival and Reliability Analyses, a Review and Historical Sketch," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    10. Liu, Xiangwei & He, Daijie & Lodewijks, Gabriel & Pang, Yusong & Mei, Jie, 2019. "Integrated decision making for predictive maintenance of belt conveyor systems," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 347-351.
    11. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    12. Gaver, Donald P. & Jacobs, Patricia A., 2014. "Reliability growth by failure mode removal," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 27-32.
    13. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    14. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    15. Wenjie Zhang & Wenhao Gui, 2022. "Statistical Inference and Optimal Design of Accelerated Life Testing for the Chen Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    16. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.
    17. Yair Orbach & Gila Fruchter, 2014. "Predicting product life cycle patterns," Marketing Letters, Springer, vol. 25(1), pages 37-52, March.
    18. Mahmoud M. Mansour & Mohammed A. Farsi & Salah M. Mohamed & Enayat M. Abd Elrazik, 2021. "Modeling the COVID-19 Pandemic Dynamics in Egypt and Saudi Arabia," Mathematics, MDPI, vol. 9(8), pages 1-13, April.
    19. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2020. "A service system with perishable products where customers are either fastidious or strategic," International Journal of Production Economics, Elsevier, vol. 228(C).
    20. Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:645-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.