IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1748-1756.html
   My bibliography  Save this article

High-throughput DNA methylation datasets for evaluating false discovery rate methodologies

Author

Listed:
  • Asomaning, N.
  • Archer, K.J.

Abstract

When analyzing high-throughput genomic data, the multiple comparison problem is most often addressed through estimation of the false discovery rate (FDR), using methods such as the Benjamini & Hochberg, Benjamini & Yekutieli, the q-value method, or in controlling the family-wise error rate (FWER) using Holm’s step down method. To date, research studies that have compared various FDR/FWER methodologies have made use of limited simulation studies and/or have applied the methods to one or more microarray gene expression dataset(s). However, for microarray datasets the veracity of each null hypothesis tested is unknown so that an objective evaluation of performance cannot be rendered for application data. Due to the role of methylation in X-chromosome inactivation, we postulate that high-throughput methylation datasets may provide an appropriate forum for assessing the performance of commonly used FDR methodologies. These datasets preserve the complex correlation structure between probes, offering an advantage over simulated datasets. Using several methylation datasets, commonly used FDR methods including the q-value, Benjamini & Hochberg, and Benjamini & Yekutieli procedures as well as Holm’s step down method were applied to identify CpG sites that are differentially methylated when comparing healthy males to healthy females. The methods were compared with respect to their ability to identify CpG sites located on sex chromosomes as significant, by reporting the sensitivity, specificity, and observed FDR. These datasets are useful for characterizing the performance of multiple comparison procedures, and may find further utility in other tasks such as comparing variable selection capabilities of classification methods and evaluating the performance of meta-analytic methods for microarray data.

Suggested Citation

  • Asomaning, N. & Archer, K.J., 2012. "High-throughput DNA methylation datasets for evaluating false discovery rate methodologies," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1748-1756.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1748-1756
    DOI: 10.1016/j.csda.2011.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003914
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia-Magariños Manuel & Antoniadis Anestis & Cao Ricardo & González-Manteiga Wenceslao, 2010. "Lasso Logistic Regression, GSoft and the Cyclic Coordinate Descent Algorithm: Application to Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-30, August.
    2. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axel Gandy & Georg Hahn & Dong Ding, 2020. "Implementing Monte Carlo tests with p‐value buckets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 950-967, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    2. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    3. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    4. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    5. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    8. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    9. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    10. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    11. Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Erminia Donnarumma & Michael Kohlhaas & Elodie Vimont & Etienne Kornobis & Thibault Chaze & Quentin Giai Gianetto & Mariette Matondo & Maryse Moya-Nilges & Christoph Maack & Timothy Wai, 2022. "Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    13. J. T. Gene Hwang & Jing Qiu & Zhigen Zhao, 2009. "Empirical Bayes confidence intervals shrinking both means and variances," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 265-285, January.
    14. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
    15. Saori Kashima & Masatoshi Matsumoto & Takahiko Ogawa & Akira Eboshida & Keisuke Takeuchi, 2012. "The Impact of Travel Time on Geographic Distribution of Dialysis Patients," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-8, October.
    16. Sahra Uygun & Cheng Peng & Melissa D Lehti-Shiu & Robert L Last & Shin-Han Shiu, 2016. "Utility and Limitations of Using Gene Expression Data to Identify Functional Associations," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    17. Cherif Ben Hamda & Raphael Sangeda & Liberata Mwita & Ayton Meintjes & Siana Nkya & Sumir Panji & Nicola Mulder & Lamia Guizani-Tabbane & Alia Benkahla & Julie Makani & Kais Ghedira & H3ABioNet Consor, 2018. "A common molecular signature of patients with sickle cell disease revealed by microarray meta-analysis and a genome-wide association study," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
    18. Tony Marion & Husni Elbahesh & Paul G Thomas & John P DeVincenzo & Richard Webby & Klaus Schughart, 2016. "Respiratory Mucosal Proteome Quantification in Human Influenza Infections," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-16, April.
    19. Daniel J. Fazakerley & Julian van Gerwen & Kristen C. Cooke & Xiaowen Duan & Elise J. Needham & Alexis Díaz-Vegas & Søren Madsen & Dougall M. Norris & Amber S. Shun-Shion & James R. Krycer & James G. , 2023. "Phosphoproteomics reveals rewiring of the insulin signaling network and multi-nodal defects in insulin resistance," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Mohammad Ohid ULLAH, 2013. "Improving The Output Of Signaling Pathway Impact Analysis," Romanian Statistical Review, Romanian Statistical Review, vol. 61(3), pages 38-43, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1748-1756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.