IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1748-1756.html
   My bibliography  Save this article

High-throughput DNA methylation datasets for evaluating false discovery rate methodologies

Author

Listed:
  • Asomaning, N.
  • Archer, K.J.

Abstract

When analyzing high-throughput genomic data, the multiple comparison problem is most often addressed through estimation of the false discovery rate (FDR), using methods such as the Benjamini & Hochberg, Benjamini & Yekutieli, the q-value method, or in controlling the family-wise error rate (FWER) using Holm’s step down method. To date, research studies that have compared various FDR/FWER methodologies have made use of limited simulation studies and/or have applied the methods to one or more microarray gene expression dataset(s). However, for microarray datasets the veracity of each null hypothesis tested is unknown so that an objective evaluation of performance cannot be rendered for application data. Due to the role of methylation in X-chromosome inactivation, we postulate that high-throughput methylation datasets may provide an appropriate forum for assessing the performance of commonly used FDR methodologies. These datasets preserve the complex correlation structure between probes, offering an advantage over simulated datasets. Using several methylation datasets, commonly used FDR methods including the q-value, Benjamini & Hochberg, and Benjamini & Yekutieli procedures as well as Holm’s step down method were applied to identify CpG sites that are differentially methylated when comparing healthy males to healthy females. The methods were compared with respect to their ability to identify CpG sites located on sex chromosomes as significant, by reporting the sensitivity, specificity, and observed FDR. These datasets are useful for characterizing the performance of multiple comparison procedures, and may find further utility in other tasks such as comparing variable selection capabilities of classification methods and evaluating the performance of meta-analytic methods for microarray data.

Suggested Citation

  • Asomaning, N. & Archer, K.J., 2012. "High-throughput DNA methylation datasets for evaluating false discovery rate methodologies," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1748-1756.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1748-1756
    DOI: 10.1016/j.csda.2011.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003914
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia-Magariños Manuel & Antoniadis Anestis & Cao Ricardo & González-Manteiga Wenceslao, 2010. "Lasso Logistic Regression, GSoft and the Cyclic Coordinate Descent Algorithm: Application to Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-30, August.
    2. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axel Gandy & Georg Hahn & Dong Ding, 2020. "Implementing Monte Carlo tests with p‐value buckets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 950-967, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    2. Sébastien L Floor & Aline Hebrant & Jaime M Pita & Manuel Saiselet & Christophe Trésallet & Frederick Libert & Guy Andry & Jacques E Dumont & Wilma C van Staveren & Carine Maenhaut, 2014. "MiRNA Expression May Account for Chronic but Not for Acute Regulation of mRNA Expression in Human Thyroid Tumor Models," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    3. Bilgrau, Anders Ellern & Eriksen, Poul Svante & Rasmussen, Jakob Gulddahl & Johnsen, Hans Erik & Dybkaer, Karen & Boegsted, Martin, 2016. "GMCM: Unsupervised Clustering and Meta-Analysis Using Gaussian Mixture Copula Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i02).
    4. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    5. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    6. Nicola J. Armstrong, 2008. "The changing focus of microarray analysis," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(3), pages 364-373, August.
    7. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    8. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    9. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Elizabeth A Osterndorff-Kahanek & Gayatri R Tiwari & Marcelo F Lopez & Howard C Becker & R Adron Harris & R Dayne Mayfield, 2018. "Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-25, January.
    11. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    13. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    14. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    15. Petra Massoner & Karl G Kugler & Karin Unterberger & Ruprecht Kuner & Laurin A J Mueller & Maria Fälth & Georg Schäfer & Christof Seifarth & Simone Ecker & Irmgard Verdorfer & Armin Graber & Holger Sü, 2013. "Characterization of Transcriptional Changes in ERG Rearrangement-Positive Prostate Cancer Identifies the Regulation of Metabolic Sensors Such as Neuropeptide Y," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    16. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    17. Debajyoti Ghosh & Lili Ding & Umasundari Sivaprasad & Esmond Geh & Jocelyn Biagini Myers & Jonathan A Bernstein & Gurjit K Khurana Hershey & Tesfaye B Mersha, 2015. "Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-23, December.
    18. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.
    19. Brian Caffo & Liu Dongmei & Giovanni Parmigiani, 2004. "Power Conjugate Multilevel Models with Applications to Genomics," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1062, Berkeley Electronic Press.
    20. Mark Pinese & Christopher J Scarlett & James G Kench & Emily K Colvin & Davendra Segara & Susan M Henshall & Robert L Sutherland & Andrew V Biankin, 2009. "Messina: A Novel Analysis Tool to Identify Biologically Relevant Molecules in Disease," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-7, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1748-1756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.