IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i3p950-967.html
   My bibliography  Save this article

Implementing Monte Carlo tests with p‐value buckets

Author

Listed:
  • Axel Gandy
  • Georg Hahn
  • Dong Ding

Abstract

Software packages usually report the results of statistical tests using p‐values. Users often interpret these values by comparing them with standard thresholds, for example, 0.1, 1, and 5%, which is sometimes reinforced by a star rating (***, **, and *, respectively). We consider an arbitrary statistical test whose p‐value p is not available explicitly, but can be approximated by Monte Carlo samples, for example, by bootstrap or permutation tests. The standard implementation of such tests usually draws a fixed number of samples to approximate p. However, the probability that the exact and the approximated p‐value lie on different sides of a threshold (the resampling risk) can be high, particularly for p‐values close to a threshold. We present a method to overcome this. We consider a finite set of user‐specified intervals that cover [0, 1] and that can be overlapping. We call these p‐value buckets. We present algorithms that, with arbitrarily high probability, return a p‐value bucket containing p. We prove that for both a bounded resampling risk and a finite runtime, overlapping buckets need to be employed, and that our methods both bound the resampling risk and guarantee a finite runtime for such overlapping buckets. To interpret decisions with overlapping buckets, we propose an extension of the star rating system. We demonstrate that our methods are suitable for use in standard software, including for low p‐value thresholds occurring in multiple testing settings, and that they can be computationally more efficient than standard implementations.

Suggested Citation

  • Axel Gandy & Georg Hahn & Dong Ding, 2020. "Implementing Monte Carlo tests with p‐value buckets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 950-967, September.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:3:p:950-967
    DOI: 10.1111/sjos.12434
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12434
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.
    2. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    3. Axel Gandy & Georg Hahn, 2014. "MMCTest—A Safe Algorithm for Implementing Multiple Monte Carlo Tests," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1083-1101, December.
    4. Lourenço, V.M. & Pires, A.M., 2014. "M-regression, false discovery rates and outlier detection with application to genetic association studies," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 33-42.
    5. Gandy, Axel, 2009. "Sequential Implementation of Monte Carlo Tests With Uniformly Bounded Resampling Risk," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1504-1511.
    6. Andrews, Donald W. K. & Buchinsky, Moshe, 2001. "Evaluation of a three-step method for choosing the number of bootstrap repetitions," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 345-386, July.
    7. Asomaning, N. & Archer, K.J., 2012. "High-throughput DNA methylation datasets for evaluating false discovery rate methodologies," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1748-1756.
    8. Silva, Ivair R. & Assunção, Renato M., 2013. "Optimal generalized truncated sequential Monte Carlo test," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 33-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    2. Hahn, Georg, 2020. "On the expected runtime of multiple testing algorithms with bounded error," Statistics & Probability Letters, Elsevier, vol. 165(C).
    3. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
    4. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    5. Johannesson Magnus & Östling Robert & Ranehill Eva, 2010. "The Effect of Competition on Physical Activity: A Randomized Trial," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-31, September.
    6. Daiki Maki & Yasushi Ota, 2021. "Testing for Time-Varying Properties Under Misspecified Conditional Mean and Variance," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1167-1182, April.
    7. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    8. Cavaliere, Giuseppe & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2011. "Testing For Unit Roots In The Presence Of A Possible Break In Trend And Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 27(5), pages 957-991, October.
    9. Ahlgren, N. & Antell, J., 2008. "Bootstrap and fast double bootstrap tests of cointegration rank with financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4754-4767, June.
    10. Alain Guay, 2020. "Identification of Structural Vector Autoregressions Through Higher Unconditional Moments," Working Papers 20-19, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    11. repec:ebl:ecbull:v:30:y:2010:i:1:p:55-66 is not listed on IDEAS
    12. Silva, Ivair R., 2017. "Confidence intervals through sequential Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 112-124.
    13. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    14. Sarlin, Peter & von Schweinitz, Gregor, 2021. "Optimizing Policymakers’ Loss Functions In Crisis Prediction: Before, Within Or After?," Macroeconomic Dynamics, Cambridge University Press, vol. 25(1), pages 100-123, January.
    15. Jasmin Kantarevic & Boris Kralj, 2016. "Physician Payment Contracts in the Presence of Moral Hazard and Adverse Selection: The Theory and Its Application in Ontario," Health Economics, John Wiley & Sons, Ltd., vol. 25(10), pages 1326-1340, October.
    16. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    17. Strikholm, Birgit & Teräsvirta, Timo, 2005. "Determining the Number of Regimes in a Threshold Autoregressive Model Using Smooth Transition Autoregressions," SSE/EFI Working Paper Series in Economics and Finance 578, Stockholm School of Economics, revised 11 Feb 2005.
    18. Matos, José M.A. & Ramos, Sandra & Costa, Vítor, 2019. "Stochastic simulated rents in Portuguese public-private partnerships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 107-117.
    19. Axel Gandy & Georg Hahn, 2016. "A Framework for Monte Carlo based Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1046-1063, December.
    20. Emmanuel Flachaire, 2000. "Les méthodes du bootstrap dans les modèles de régression," Économie et Prévision, Programme National Persée, vol. 142(1), pages 183-194.
    21. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:3:p:950-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.