IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i9p2557-2567.html
   My bibliography  Save this article

An alternative objective function for fitting regression trees to functional response variables

Author

Listed:
  • Lane, Stephen E.
  • Robinson, Andrew P.

Abstract

Analyses of systems that can be represented by functional responses are becoming common in many scientific disciplines. Functional regression trees (FRT) provide a methodology for modelling such systems. Recent work has focused on fitting models where the response variable is a probability density function, using a splitting criterion that is based on the sum of dissimilarities between the densities. We suggest a different criterion based on deviations of the densities from their mean. We provide motivation and justification for this criterion, and demonstrate its superior performance using an extensive simulation exercise. We discuss the computational aspects of the FRT procedure and show that substantial speed gains can be made through use of a dissimilarity matrix. Our results show that the proposed splitting criterion outperforms both the original and a splitting criterion based on Euclidean distance. Pointwise standard error curves for a predicted functional response can be generated through the fitting procedure, which we demonstrate in a case study with a forestry data set. Supplementary materials are available.

Suggested Citation

  • Lane, Stephen E. & Robinson, Andrew P., 2011. "An alternative objective function for fitting regression trees to functional response variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2557-2567, September.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:9:p:2557-2567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311001137
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Véronique Cariou, 2006. "Extension of multivariate regression trees to interval data. Application to electricity load profiling," Computational Statistics, Springer, vol. 21(2), pages 325-341, June.
    2. Nerini, David & Ghattas, Badih, 2007. "Classifying densities using functional regression trees: Applications in oceanology," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4984-4993, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casado, David, 2009. "Classification of functional data: a weighted distance approach," DES - Working Papers. Statistics and Econometrics. WS ws093915, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    3. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    4. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    5. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    6. Crisci, C. & Ghattas, B. & Perera, G., 2012. "A review of supervised machine learning algorithms and their applications to ecological data," Ecological Modelling, Elsevier, vol. 240(C), pages 113-122.
    7. Germán Aneiros-Pérez & Philippe Vieu, 2013. "Testing linearity in semi-parametric functional data analysis," Computational Statistics, Springer, vol. 28(2), pages 413-434, April.
    8. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    9. Bongiorno, Enea G. & Goia, Aldo, 2019. "Describing the concentration of income populations by functional principal component analysis on Lorenz curves," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 10-24.
    10. Dennis A. Perry & Bill Olson & Paul Blessner & Timothy D. Blackburn, 2016. "Evaluating the Systems Engineering Problem Management Process for Industrial Manufacturing Problems," Systems Engineering, John Wiley & Sons, vol. 19(2), pages 133-145, March.
    11. Antonio D’Ambrosio & Willem J. Heiser, 2016. "A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 774-794, September.
    12. Park, Juhyun & Gasser, Theo & Rousson, Valentin, 2009. "Structural components in functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3452-3465, July.
    13. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    14. Karel Hron & Jitka Machalová & Alessandra Menafoglio, 2023. "Bivariate densities in Bayes spaces: orthogonal decomposition and spline representation," Statistical Papers, Springer, vol. 64(5), pages 1629-1667, October.
    15. Shu-Fu Kuo & Yu-Shan Shih, 2012. "Variable selection for functional density trees," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1387-1395, December.
    16. Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
    17. Croux, Christophe & Joossens, Kristel & Lemmens, Aurelie, 2007. "Trimmed bagging," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 362-368, September.
    18. Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
    19. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
    20. Maria Ruiz-Medina & Rosa Espejo & Elvira Romano, 2014. "Spatial functional normal mixed effect approach for curve classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 257-285, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:9:p:2557-2567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.