IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i4p1610-1616.html
   My bibliography  Save this article

A random effects epidemic-type aftershock sequence model

Author

Listed:
  • Lin, Feng-Chang

Abstract

We consider an extension of the temporal epidemic-type aftershock sequence (ETAS) model with random effects as a special case of a well-known doubly stochastic self-exciting point process. The new model arises from a deterministic function that is randomly scaled by a nonnegative random variable, which is unobservable but assumed to follow either positive stable or one-parameter gamma distribution with unit mean. Both random effects models are of interest although the one-parameter gamma random effects model is more popular when modeling associated survival times. Our estimation is based on the maximum likelihood approach with marginalized intensity. The methods are shown to perform well in simulation experiments. When applied to an earthquake sequence on the east coast of Taiwan, the extended model with positive stable random effects provides a better model fit, compared to the original ETAS model and the extended model with one-parameter gamma random effects.

Suggested Citation

  • Lin, Feng-Chang, 2011. "A random effects epidemic-type aftershock sequence model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1610-1616, April.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1610-1616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00374-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veen, Alejandro & Schoenberg, Frederic P., 2008. "Estimation of SpaceTime Branching Process Models in Seismology Using an EMType Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 614-624, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhongping & Cui, Lirong & Chen, Jianhui, 2018. "Traffic accident modelling via self-exciting point processes," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 312-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
    2. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    3. Julio A. Crego, 2017. "Short Selling Ban and Intraday Dynamics," Working Papers wp2018_1715, CEMFI.
    4. Wheatley, Spencer & Filimonov, Vladimir & Sornette, Didier, 2016. "The Hawkes process with renewal immigration & its estimation with an EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 120-135.
    5. Giada Adelfio & Arianna Agosto & Marcello Chiodi & Paolo Giudici, 2021. "Financial contagion through space-time point processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 665-688, June.
    6. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    7. Chenlong Li & Kaiyan Cui, 2024. "Multivariate Hawkes processes with spatial covariates for spatiotemporal event data analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(4), pages 535-578, August.
    8. González, M. & Minuesa, C. & del Puerto, I., 2016. "Maximum likelihood estimation and expectation–maximization algorithm for controlled branching processes," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 209-227.
    9. Vipul Aggarwal & Elina H. Hwang & Yong Tan, 2021. "Learning to Be Creative: A Mutually Exciting Spatiotemporal Point Process Model for Idea Generation in Open Innovation," Information Systems Research, INFORMS, vol. 32(4), pages 1214-1235, December.
    10. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    11. Brantingham, P. Jeffrey & Carter, Jeremy & MacDonald, John & Melde, Chris & Mohler, George, 2021. "Is the recent surge in violence in American cities due to contagion?," Journal of Criminal Justice, Elsevier, vol. 76(C).
    12. Julio A. Crego, 2017. "Short Selling Ban and Intraday Dynamics," Working Papers wp2017_1715, CEMFI.
    13. Jakob Gulddahl Rasmussen, 2013. "Bayesian Inference for Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 623-642, September.
    14. Mohler, George & Carter, Jeremy & Raje, Rajeev, 2018. "Improving social harm indices with a modulated Hawkes process," International Journal of Forecasting, Elsevier, vol. 34(3), pages 431-439.
    15. Alex Reinhart & Joel Greenhouse, 2018. "Self‐exciting point processes with spatial covariates: modelling the dynamics of crime," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1305-1329, November.
    16. Francesco Serafini & Finn Lindgren & Mark Naylor, 2023. "Approximation of Bayesian Hawkes process with inlabru," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    17. Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
    18. Peter Halpin & Paul Boeck, 2013. "Modelling Dyadic Interaction with Hawkes Processes," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 793-814, October.
    19. Hautphenne, Sophie & Fackrell, Mark, 2014. "An EM algorithm for the model fitting of Markovian binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 19-34.
    20. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1610-1616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.