IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i5p882-896.html
   My bibliography  Save this article

A practical method to calculate probabilities: illustrative example from the electronic industry business

Author

Listed:
  • Douglas Moura Miranda
  • Samuel Vieira Conceição

Abstract

The real-life environment is made of probabilistic data by nature and the ability to make decisions based on probabilities is crucial in the business world. It is common to have a set of data and the need of calculating the probability of taking a value greater or less than a specific value. It is also common in many companies the unavailability of a statistical software or a specialized professional in statistics. The purpose of this paper is to present a practical and simple method to calculate probabilities from normal or non-normal distributed data set and illustrate it with an application from the electronic industry. The method does not demand statistical knowledge from the user; there is no need of normality assumptions, goodness test or transformations. The proposed method is easy to implement, robust and the experiments have evidenced its quality. The technique is validated with a large variety of instances and compared with the well-known Johnson system of distributions.

Suggested Citation

  • Douglas Moura Miranda & Samuel Vieira Conceição, 2017. "A practical method to calculate probabilities: illustrative example from the electronic industry business," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 882-896, April.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:5:p:882-896
    DOI: 10.1080/02664763.2016.1189517
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1189517
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1189517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexopoulos, Christos & Goldsman, David & Fontanesi, John & Kopald, David & Wilson, James R., 2008. "Modeling patient arrivals in community clinics," Omega, Elsevier, vol. 36(1), pages 33-43, February.
    2. Abbasi, B. & Hosseinifard, S.Z. & Coit, D.W., 2010. "A neural network applied to estimate Burr XII distribution parameters," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 647-654.
    3. I. D. Hill & R. Hill & R. L. Holder, 1976. "Fitting Johnson Curves by Moments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 180-189, June.
    4. Paranaíba, Patrícia F. & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R., 2011. "The beta Burr XII distribution with application to lifetime data," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1118-1136, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanieh Panahi, 2019. "Estimation for the parameters of the Burr Type XII distribution under doubly censored sample with application to microfluidics data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 510-518, August.
    2. Chen, Huifen & Cheng, Yuyen, 2007. "Non-normality effects on the economic-statistical design of charts with Weibull in-control time," European Journal of Operational Research, Elsevier, vol. 176(2), pages 986-998, January.
    3. Tugba Cayirli & Kum Khiong Yang, 2019. "Altering the Environment to Improve Appointment System Performance," Service Science, INFORMS, vol. 11(2), pages 138-154, June.
    4. Stuart Barber & Guy P. Nason & Bernard W. Silverman, 2002. "Posterior probability intervals for wavelet thresholding," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 189-205, May.
    5. Karmel S. Shehadeh & Amy E. M. Cohn & Ruiwei Jiang, 2021. "Using stochastic programming to solve an outpatient appointment scheduling problem with random service and arrival times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 89-111, February.
    6. N. Naguez & J. L. Prigent, 2017. "Optimal portfolio positioning within generalized Johnson distributions," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1037-1055, July.
    7. Muino, J.M. & Voit, E.O. & Sorribas, A., 2006. "GS-distributions: A new family of distributions for continuous unimodal variables," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2769-2798, June.
    8. Chakraburty Subrata & Alizadeh Morad & Handique Laba & Altun Emrah & Hamedani G. G., 2021. "A new extension of Odd Half-Cauchy Family of Distributions: properties and applications with regression modeling," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 77-100, December.
    9. Cayton, Peter Julian, 2015. "A Nonparametric Option Pricing Model Using Higher Moments," MPRA Paper 63755, University Library of Munich, Germany.
    10. Patrizia Stucchi & Giorgio Dominese, 2012. "Evolution of Equity Market Risk During the Crisis: Europe, Americas and Asia," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 19(2), pages 163-178, November.
    11. Sree Vinutha Venkataraman & S. V. D. Nageswara Rao, 2016. "Estimation of dynamic VaR using JSU and PIV distributions," Risk Management, Palgrave Macmillan, vol. 18(2), pages 111-134, August.
    12. McClean, Sally & Gillespie, Jennifer & Garg, Lalit & Barton, Maria & Scotney, Bryan & Kullerton, Ken, 2014. "Using phase-type models to cost stroke patient care across health, social and community services," European Journal of Operational Research, Elsevier, vol. 236(1), pages 190-199.
    13. Hirschberger, Markus & Qi, Yue & Steuer, Ralph E., 2007. "Randomly generating portfolio-selection covariance matrices with specified distributional characteristics," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1610-1625, March.
    14. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    15. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    16. Jean-Guy Simonato, 2011. "Johnson binomial trees," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1165-1176.
    17. Xiangdong Xu & Anthony Chen & Lin Cheng, 2013. "Assessing the effects of stochastic perception error under travel time variability," Transportation, Springer, vol. 40(3), pages 525-548, May.
    18. Changfu Ma & Wei Xu & Yue Kuen Kwok, 2020. "Willow tree algorithms for pricing VIX derivatives under stochastic volatility models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-28, March.
    19. Phillip Oluwatobi Awodutire & Oluwafemi Samson Balogun & Akintayo Kehinde Olapade & Ethelbert Chinaka Nduka, 2021. "The modified beta transmuted family of distributions with applications using the exponential distribution," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-25, November.
    20. Mahmoudi, Eisa, 2011. "The beta generalized Pareto distribution with application to lifetime data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2414-2430.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:5:p:882-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.