IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v63y1997i1p15-34.html
   My bibliography  Save this article

On Inconsistency of the Jackknife-after-Bootstrap Bias Estimator for Dependent Data

Author

Listed:
  • Lahiri, Soumendra Nath

Abstract

B. Efron introducedjackknife-after-bootstrapas a computationally efficient method for estimating standard errors of bootstrap estimators. In a recent paper consistency of the jackknife-after-bootstrap variance estimators has been established for different bootstrap quantities for independent and dependent data. In this paper, it is shown that in the dependent case, the standard jackknife-after-bootstrap estimator for the bias of block bootstrap quantities is inconsistent for almost any sensible choice of the blocking parameters. Some alternative bias estimators are proposed and shown to be consistent.

Suggested Citation

  • Lahiri, Soumendra Nath, 1997. "On Inconsistency of the Jackknife-after-Bootstrap Bias Estimator for Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 15-34, October.
  • Handle: RePEc:eee:jmvana:v:63:y:1997:i:1:p:15-34
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91699-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahiri, Soumendra Nath, 1991. "Second order optimality of stationary bootstrap," Statistics & Probability Letters, Elsevier, vol. 11(4), pages 335-341, April.
    2. Hall, Peter, 1985. "Resampling a coverage pattern," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 231-246, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    2. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Tina Kalayil & Somya Tyagi & Mahfuza Khatun & Sikandar Siddiqui, 2019. "A Risk-Sensitive Momentum Approach To Stock Selection," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 64(220), pages 61-84, January –.
    4. repec:hum:wpaper:sfb649dp2008-073 is not listed on IDEAS
    5. Hinrichsen, Richard A. & Paulsen, Charles M., 2020. "Low carrying capacity a risk for threatened Chinook Salmon," Ecological Modelling, Elsevier, vol. 432(C).
    6. Datta, Somnath & Sriram, T. N., 1995. "A modified bootstrap for branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 275-294, April.
    7. BenSaïda, Ahmed, 2019. "Good and bad volatility spillovers: An asymmetric connectedness," Journal of Financial Markets, Elsevier, vol. 43(C), pages 78-95.
    8. Jeong, Jinook & Chung, Seoung, 2001. "Bootstrap tests for autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 49-69, November.
    9. Wolfgang Hardle & Torsten Kleinow & Alexander Korostelev & Camille Logeay & Eckhard Platen, 2008. "Semiparametric diffusion estimation and application to a stock market index," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 81-92.
    10. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    11. Blaskowitz, Oliver J. & Herwartz, Helmut, 2008. "Testing directional forecast value in the presence of serial correlation," SFB 649 Discussion Papers 2008-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    13. Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
    14. Cerqueti, Roy & Falbo, Paolo & Pelizzari, Cristian, 2017. "Relevant states and memory in Markov chain bootstrapping and simulation," European Journal of Operational Research, Elsevier, vol. 256(1), pages 163-177.
    15. Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
    16. Wolfgang Härdle & Joel Horowitz & Jens‐Peter Kreiss, 2003. "Bootstrap Methods for Time Series," International Statistical Review, International Statistical Institute, vol. 71(2), pages 435-459, August.
    17. Ulrich Hounyo, 2014. "The wild tapered block bootstrap," CREATES Research Papers 2014-32, Department of Economics and Business Economics, Aarhus University.
    18. Sjöstedt-de Luna, Sara, 2001. "Resampling non-homogeneous spatial data with smoothly varying mean values," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 373-379, July.
    19. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
    20. Whitcher, Brandon, 2006. "Wavelet-based bootstrapping of spatial patterns on a finite lattice," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2399-2421, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:63:y:1997:i:1:p:15-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.