IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v8y2021i1d10.1007_s40745-019-00201-y.html
   My bibliography  Save this article

Zero-Truncated Poisson-Power Function Distribution

Author

Listed:
  • Idika Eke Okorie

    (University of Manchester)

  • Anthony Chukwudi Akpanta

    (Abia State University)

  • Johnson Ohakwe

    (Federal University Otuoke)

  • David Chidi Chikezie

    (Abia State University)

  • Chris Uche Onyemachi

    (Abia State University)

  • Manoj Kumar Rastogi

    (National Institute of Pharmaceutical Education and Research)

Abstract

A three-parameter distribution with increasing, bathtub, and upside-down bathtub hazard rate characteristics is introduced. Various properties are discussed and nicely expressed in closed forms and the estimation of parameters is studied by the method of maximum likelihood. Numerical examples based on two real data-sets are presented.

Suggested Citation

  • Idika Eke Okorie & Anthony Chukwudi Akpanta & Johnson Ohakwe & David Chidi Chikezie & Chris Uche Onyemachi & Manoj Kumar Rastogi, 2021. "Zero-Truncated Poisson-Power Function Distribution," Annals of Data Science, Springer, vol. 8(1), pages 107-129, March.
  • Handle: RePEc:spr:aodasc:v:8:y:2021:i:1:d:10.1007_s40745-019-00201-y
    DOI: 10.1007/s40745-019-00201-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-019-00201-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-019-00201-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    2. Barreto-Souza, Wagner & Cribari-Neto, Francisco, 2009. "A generalization of the exponential-Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2493-2500, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    2. Louzada, Francisco & Roman, Mari & Cancho, Vicente G., 2011. "The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2516-2524, August.
    3. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    4. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    5. Ahmed Elshahhat & EL-Sayed A. El-Sherpieny & Amal S. Hassan, 2023. "The Pareto–Poisson Distribution: Characteristics, Estimations and Engineering Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1058-1099, February.
    6. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    7. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.
    8. Shovan Chowdhury, 2014. "Compounded Generalized Weibull Distributions - A Unified Approach," Working papers 148, Indian Institute of Management Kozhikode.
    9. Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.
    10. Saralees Nadarajah & Vicente Cancho & Edwin Ortega, 2013. "The geometric exponential Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(3), pages 355-380, August.
    11. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    12. Silva, Rodrigo B. & Barreto-Souza, Wagner & Cordeiro, Gauss M., 2010. "A new distribution with decreasing, increasing and upside-down bathtub failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 935-944, April.
    13. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    14. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    15. Jimut Bahan Chakrabarty & Shovan Chowdhury, 2016. "Compounded Inverse Weibull Distributions: Properties, Inference and Applications," Working papers 213, Indian Institute of Management Kozhikode.
    16. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.
    17. Mojtaba Alizadeh & Seyyed Fazel Bagheri & Mohammad Alizadeh & Saralees Nadarajah, 2017. "A new four-parameter lifetime distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 767-797, April.
    18. Wanbo Lu & Daimin Shi, 2012. "A new compounding life distribution: the Weibull--Poisson distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 21-38, March.
    19. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    20. Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2018. "Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1235-1249, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:8:y:2021:i:1:d:10.1007_s40745-019-00201-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.