IDEAS home Printed from https://ideas.repec.org/p/iik/wpaper/213.html
   My bibliography  Save this paper

Compounded Inverse Weibull Distributions: Properties, Inference and Applications

Author

Listed:
  • Jimut Bahan Chakrabarty

    (Indian Institute of Management Kozhikode)

  • Shovan Chowdhury

    (Indian Institute of Management Kozhikode)

Abstract

In this paper two probability distributions are introduced compounding inverse Weibull distribution with Poisson and geometric distributions. The distributions can be used to model lifetime of series system where the lifetimes follow inverse Weibull distribution and the subgroup size being random follows either geometric or Poisson distribution. Some of the important statistical and reliability properties of each of the distributions are derived. The distributions are found to exhibit both monotone and non-monotone failure rates. The parameters of the distributions are estimated using the maximum likelihood method and the expectation-maximization algorithm. The potentials of the distributions are explored through three real life data sets and are compared with similar compounded distributions, viz. Weibull-geometric, Weibull-Poisson, exponential-geometric and exponential-Poisson distributions.

Suggested Citation

  • Jimut Bahan Chakrabarty & Shovan Chowdhury, 2016. "Compounded Inverse Weibull Distributions: Properties, Inference and Applications," Working papers 213, Indian Institute of Management Kozhikode.
  • Handle: RePEc:iik:wpaper:213
    as

    Download full text from publisher

    File URL: https://iimk.ac.in/websiteadmin/FacultyPublications/Working%20Papers/213fullp.pdf?t=58
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felipe Gusmão & Edwin Ortega & Gauss Cordeiro, 2011. "The generalized inverse Weibull distribution," Statistical Papers, Springer, vol. 52(3), pages 591-619, August.
    2. Chahkandi, M. & Ganjali, M., 2009. "On some lifetime distributions with decreasing failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4433-4440, October.
    3. Ali Akbar Bromideh, 2012. "Discriminating Between Weibull and Log-Normal Distributions Based on Kullback-Leibler Divergence," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 16(1), pages 44-54, May.
    4. Barreto-Souza, Wagner & Cribari-Neto, Francisco, 2009. "A generalization of the exponential-Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2493-2500, December.
    5. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    6. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    2. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    3. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    4. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    5. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    6. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    7. Shovan Chowdhury, 2014. "Compounded Generalized Weibull Distributions - A Unified Approach," Working papers 148, Indian Institute of Management Kozhikode.
    8. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    9. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    10. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.
    11. Mojtaba Alizadeh & Seyyed Fazel Bagheri & Mohammad Alizadeh & Saralees Nadarajah, 2017. "A new four-parameter lifetime distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 767-797, April.
    12. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    13. Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.
    14. Barreto-Souza, Wagner, 2012. "Bivariate gamma-geometric law and its induced Lévy process," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 130-145.
    15. Shovan Chowdhury & Asok K Nanda, 2015. "A special class of distorted premium principle based on an extension of the exponential-geometric distribution," Working papers 188, Indian Institute of Management Kozhikode.
    16. Beatriz R. Lanjoni & Edwin M. M. Ortega & Gauss M. Cordeiro, 2016. "Extended Burr XII Regression Models: Theory and Applications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 203-224, March.
    17. Amal S. Hassan & Salwa M. Assar, 2021. "A New Class of Power Function Distribution: Properties and Applications," Annals of Data Science, Springer, vol. 8(2), pages 205-225, June.
    18. Bobotas, Panayiotis & Koutras, Markos V., 2019. "Distributions of the minimum and the maximum of a random number of random variables," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 57-64.
    19. Idika Eke Okorie & Anthony Chukwudi Akpanta & Johnson Ohakwe & David Chidi Chikezie & Chris Uche Onyemachi & Manoj Kumar Rastogi, 2021. "Zero-Truncated Poisson-Power Function Distribution," Annals of Data Science, Springer, vol. 8(1), pages 107-129, March.
    20. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.

    More about this item

    Keywords

    Inverse Weibull distribution; Poisson distribution; Geometric distribution; Hazard function; Maximum likelihood estimation; EM algorithm.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iik:wpaper:213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sudheesh Kumar (email available below). General contact details of provider: https://edirc.repec.org/data/iikmmin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.