IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i24p2493-2500.html
   My bibliography  Save this article

A generalization of the exponential-Poisson distribution

Author

Listed:
  • Barreto-Souza, Wagner
  • Cribari-Neto, Francisco

Abstract

The two-parameter distribution known as exponential-Poisson (EP) distribution, which has decreasing failure rate, was introduced by Kus (2007). In this paper we generalize the EP distribution and show that the failure rate of the new distribution can be decreasing or increasing. The failure rate can also be upside-down bathtub shaped. A comprehensive mathematical treatment of the new distribution is provided. We provide closed-form expressions for the density, cumulative distribution, survival and failure rate functions; we also obtain the density of the ith order statistic. We derive the rth raw moment of the new distribution and also the moments of order statistics. Moreover, we discuss estimation by maximum likelihood and obtain an expression for Fisher's information matrix. Furthermore, expressions for the Rényi and Shannon entropies are given and an application using a real data set is presented. Finally, simulation results on maximum likelihood estimation are presented.

Suggested Citation

  • Barreto-Souza, Wagner & Cribari-Neto, Francisco, 2009. "A generalization of the exponential-Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2493-2500, December.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:24:p:2493-2500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00344-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kus, Coskun, 2007. "A new lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4497-4509, May.
    2. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    3. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    4. Francisco Cribari-Neto & Spyros Zarkos, 2003. "Econometric and Statistical Computing Using Ox," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 277-295, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    2. Louzada, Francisco & Roman, Mari & Cancho, Vicente G., 2011. "The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2516-2524, August.
    3. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    4. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    5. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.
    6. Shahsanaei Fatemeh & Rezaei Sadegh & Pak Abbas, 2012. "A New Two-Parameter Lifetime Distribution with Increasing Failure Rate," Stochastics and Quality Control, De Gruyter, vol. 27(1), pages 1-17, September.
    7. Eryilmaz, Serkan, 2016. "A new class of lifetime distributions," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 63-71.
    8. Ausaina Niyomdecha & Patchanok Srisuradetchai, 2023. "Complementary Gamma Zero-Truncated Poisson Distribution and Its Application," Mathematics, MDPI, vol. 11(11), pages 1-13, June.
    9. Chahkandi, M. & Ganjali, M., 2009. "On some lifetime distributions with decreasing failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4433-4440, October.
    10. Ibrahim Elbatal & Emrah Altun & Ahmed Z. Afify & Gamze Ozel, 2019. "The Generalized Burr XII Power Series Distributions with Properties and Applications," Annals of Data Science, Springer, vol. 6(3), pages 571-597, September.
    11. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.
    12. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    13. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    14. Francesca Condino & Filippo Domma, 2017. "A new distribution function with bounded support: the reflected generalized Topp-Leone power series distribution," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 51-68, April.
    15. Shovan Chowdhury & Asok K Nanda, 2015. "A special class of distorted premium principle based on an extension of the exponential-geometric distribution," Working papers 188, Indian Institute of Management Kozhikode.
    16. Silva, Rodrigo B. & Barreto-Souza, Wagner & Cordeiro, Gauss M., 2010. "A new distribution with decreasing, increasing and upside-down bathtub failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 935-944, April.
    17. Wenhao Gui & Huainian Zhang & Lei Guo, 2017. "The Complementary Lindley-Geometric Distribution and Its Application in Lifetime Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 316-335, November.
    18. Cícero R. B. Dias & Gauss M. Cordeiro & Morad Alizadeh & Pedro Rafael Diniz Marinho & Hemílio Fernandes Campos Coêlho, 2016. "Exponentiated Marshall-Olkin family of distributions," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-21, December.
    19. Bobotas, Panayiotis & Koutras, Markos V., 2019. "Distributions of the minimum and the maximum of a random number of random variables," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 57-64.
    20. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:24:p:2493-2500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.