IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v185y2021ics0047259x21000452.html
   My bibliography  Save this article

Simultaneous inference for Kendall’s tau

Author

Listed:
  • Nowak, Claus P.
  • Konietschke, Frank

Abstract

We introduce multiple contrast tests and simultaneous confidence intervals for rank correlation measures in general multivariate factorial designs. To this end, we derive the unconditional asymptotic joint sampling distribution of multiple correlation coefficients under the null and arbitrary alternatives. We neither require distributions to be discrete nor continuous and adjust for ties using a normalized version of the bivariate distribution function and scale point estimators appropriately to obtain Kendall’s τA and τB, Somers’ D, and Goodman and Kruskal’s γ. Simulation studies for a range of scenarios indicate that the proposed methods control the family wise error rate in the strong sense even when sample sizes are rather small. A case study on the iris flower data set demonstrates how to perform inference in practice.

Suggested Citation

  • Nowak, Claus P. & Konietschke, Frank, 2021. "Simultaneous inference for Kendall’s tau," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000452
    DOI: 10.1016/j.jmva.2021.104767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    2. Gunawardana, Asanka & Konietschke, Frank, 2019. "Nonparametric multiple contrast tests for general multivariate factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 165-180.
    3. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2003. "Kendall distribution functions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 263-268, November.
    4. Edgar Brunner & Frank Konietschke & Markus Pauly & Madan L. Puri, 2017. "Rank-based procedures in factorial designs: hypotheses about non-parametric treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1463-1485, November.
    5. Munzel, Ullrich, 1999. "Linear rank score statistics when ties are present," Statistics & Probability Letters, Elsevier, vol. 41(4), pages 389-395, February.
    6. Manuela Schreyer & Roland Paulin & Wolfgang Trutschnig, 2017. "On the exact region determined by Kendall's τ and Spearman's ρ," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 613-633, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunawardana, Asanka & Konietschke, Frank, 2019. "Nonparametric multiple contrast tests for general multivariate factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 165-180.
    2. Dennis Dobler & Sarah Friedrich & Markus Pauly, 2020. "Nonparametric MANOVA in meaningful effects," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 997-1022, August.
    3. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    4. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    5. Miao, Ruiqing & Hennessy, David A. & Feng, Hongli, 2016. "The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    6. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    7. Kasper Thimo M. & Fuchs Sebastian & Trutschnig Wolfgang, 2021. "On convergence of associative copulas and related results," Dependence Modeling, De Gruyter, vol. 9(1), pages 307-326, January.
    8. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    9. Pisit Leeahtam & Chukiat Chaiboonsri & Kanchana Chokethaworn & Prasert Chaitip & Songsak Sriboonchitta, 2011. "The Appropriate Model and Dependence Measures of Thailand’s Exchange Rate and Malaysia’s Exchange Rate: Linear, Nonlinear and Copulas Approach," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 1(6), pages 1-14, October.
    10. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Betes, Elena Blanc & Hudiburg, Tara & DeLucia, Evan, 2022. "Payment for carbon mitigation reduces riskiness of bioenergy crop production," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322277, Agricultural and Applied Economics Association.
    11. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    12. Junker, Robert R. & Griessenberger, Florian & Trutschnig, Wolfgang, 2021. "Estimating scale-invariant directed dependence of bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    13. Mohit Anand & Ruiqing Miao & Madhu Khanna, 2019. "Adopting bioenergy crops: Does farmers’ attitude toward loss matter?," Agricultural Economics, International Association of Agricultural Economists, vol. 50(4), pages 435-450, July.
    14. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    15. Erlend Bø & Peter Lambert & Thor Thoresen, 2012. "Horizontal inequity under a dual income tax system: principles and measurement," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(5), pages 625-640, October.
    16. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.
    17. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    19. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    20. Cole, Matthew A. & Elliott, Robert J.R. & Occhiali, Giovanni & Strobl, Eric, 2018. "Power outages and firm performance in Sub-Saharan Africa," Journal of Development Economics, Elsevier, vol. 134(C), pages 150-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.