IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i2p416-428.html
   My bibliography  Save this article

A two-component Weibull mixture to model early and late mortality in a Bayesian framework

Author

Listed:
  • Farcomeni, Alessio
  • Nardi, Alessandra

Abstract

A two-component parametric mixture is proposed to model survival after an invasive treatment, when patients may experience different hazards regimes: a risk of early mortality directly related to the treatment and/or the treated condition, and a risk of late death influenced by several exogenous factors. The parametric mixture is based on Weibull distributions for both components. Different sets of covariates can affect the Weibull scale parameters and the probability of belonging to one of the two latent classes. A logarithmic function is used to link explanatory variables to scale parameters while a logistic link is assumed for the probability of the latent classes. Inference about unknown parameters is developed in a Bayesian framework: point and interval estimates are based on posterior distributions, whereas the Schwarz criterion is used for testing hypotheses. The advantages of the approach are illustrated by analyzing data from an aorta aneurysm study.

Suggested Citation

  • Farcomeni, Alessio & Nardi, Alessandra, 2010. "A two-component Weibull mixture to model early and late mortality in a Bayesian framework," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 416-428, February.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:416-428
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00323-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    2. R. Jiang & D. N. P. Murthy, 1998. "Mixture of Weibull distributions—parametric characterization of failure rate function," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 14(1), pages 47-65, March.
    3. van Wieringen, Wessel N. & Kun, David & Hampel, Regina & Boulesteix, Anne-Laure, 2009. "Survival prediction using gene expression data: A review and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1590-1603, March.
    4. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    5. Alessandra Nardi & Michael Schemper, 1999. "New Residuals for Cox Regression and Their Application to Outlier Screening," Biometrics, The International Biometric Society, vol. 55(2), pages 523-529, June.
    6. Yu, Binbing & Peng, Yingwei, 2008. "Mixture cure models for multivariate survival data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1524-1532, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Franco & Narayanaswamy Balakrishnan & Debasis Kundu & Juana-María Vivo, 2014. "Generalized mixtures of Weibull components," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 515-535, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Xiuyun & Yan, Zaizai, 2014. "Estimation and application for a new extended Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 34-42.
    2. Nuriye Sancar & Deniz Inan, 2018. "A novel method as a diagnostic tool for the detection of influential observations in the Cox proportional hazards model," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 1253-1266, December.
    3. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    4. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    5. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    6. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    7. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    8. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    9. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    10. Han, Bo & Wang, Xiaoguang, 2020. "Semiparametric estimation for the non-mixture cure model in case-cohort and nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    12. Shao, Wei & Guo, Guangbao & Meng, Fanyu & Jia, Shuqin, 2013. "An efficient proposal distribution for Metropolis–Hastings using a B-splines technique," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 465-478.
    13. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    14. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    15. Stefanie Hieke & Axel Benner & Richard F Schlenk & Martin Schumacher & Lars Bullinger & Harald Binder, 2016. "Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
    16. Hazan, Alon & Landsman, Zinoviy & E Makov, Udi, 2003. "Robustness via a mixture of exponential power distributions," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 111-121, February.
    17. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    18. Yu Takagi & Hirokazu Matsuda & Yukio Taniguchi & Hiroaki Iwaisaki, 2014. "Predicting the Phenotypic Values of Physiological Traits Using SNP Genotype and Gene Expression Data in Mice," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
    19. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    20. Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:416-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.