Multilevel cumulative logistic regression model with random effects: Application to British social attitudes panel survey data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2015.02.018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
- M. C. Donohue & R. Overholser & R. Xu & F. Vaida, 2011. "Conditional Akaike information under generalized linear and proportional hazards mixed models," Biometrika, Biometrika Trust, vol. 98(3), pages 685-700.
- Wan, Alan T.K. & Zhang, Xinyu & Wang, Shouyang, 2014. "Frequentist model averaging for multinomial and ordered logit models," International Journal of Forecasting, Elsevier, vol. 30(1), pages 118-128.
- Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
- Antony Fielding & Min Yang, 2005. "Generalized linear mixed models for ordered responses in complex multilevel structures: effects beneath the school or college in education," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 159-183, January.
- Yu, Dalei & Zhang, Xinyu & Yau, Kelvin K.W., 2013. "Information based model selection criteria for generalized linear mixed models with unknown variance component parameters," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 245-262.
- Bo Cai & David B. Dunson, 2006. "Bayesian Covariance Selection in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 62(2), pages 446-457, June.
- Noh, Maengseok & Lee, Youngjo, 2007. "REML estimation for binary data in GLMMs," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 896-915, May.
- Franses,Philip Hans & Paap,Richard, 2010.
"Quantitative Models in Marketing Research,"
Cambridge Books,
Cambridge University Press, number 9780521143653, January.
- Franses,Philip Hans & Paap,Richard, 2001. "Quantitative Models in Marketing Research," Cambridge Books, Cambridge University Press, number 9780521801669, September.
- Li C. Liu & Donald Hedeker, 2006. "A Mixed-Effects Regression Model for Longitudinal Multivariate Ordinal Data," Biometrics, The International Biometric Society, vol. 62(1), pages 261-268, March.
- Jeroen K. Vermunt, 2004. "An EM algorithm for the estimation of parametric and nonparametric hierarchical nonlinear models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(2), pages 220-233, May.
- White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
- Lin, Kuo-Chin, 2010. "Goodness-of-fit tests for modeling longitudinal ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1872-1880, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
- Dalei Yu, 2016. "Conditional Akaike Information Criteria for a Class of Poisson Mixture Models with Random Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1214-1235, December.
- Wei, Yuting & Wang, Qihua & Duan, Xiaogang & Qin, Jing, 2021. "Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
- Yuki Kawakubo & Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Conditional AIC under Covariate Shift with Application to Small Area Prediction," CIRJE F-Series CIRJE-F-944, CIRJE, Faculty of Economics, University of Tokyo.
- Craiu, Radu V. & Duchesne, Thierry, 2018. "A scalable and efficient covariate selection criterion for mixed effects regression models with unknown random effects structure," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 154-161.
- Zhao, Shangwei & Zhou, Jianhong & Yang, Guangren, 2019. "Averaging estimators for discrete choice by M-fold cross-validation," Economics Letters, Elsevier, vol. 174(C), pages 65-69.
- Yu, Dalei & Zhang, Xinyu & Yau, Kelvin K.W., 2013. "Information based model selection criteria for generalized linear mixed models with unknown variance component parameters," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 245-262.
- Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
- María José Lombardía & Esther López‐Vizcaíno & Cristina Rueda, 2017. "Mixed generalized Akaike information criterion for small area models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1229-1252, October.
- Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019.
"Model averaging estimators for the stochastic frontier model,"
Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
- Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2016. "Model Averaging Estimators for the Stochastic Frontier Model," Working Papers 2016-09, University of Miami, Department of Economics.
- Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
- Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
- Thanapong Champahom & Sajjakaj Jomnonkwao & Chinnakrit Banyong & Watanya Nambulee & Ampol Karoonsoontawong & Vatanavongs Ratanavaraha, 2021. "Analysis of Crash Frequency and Crash Severity in Thailand: Hierarchical Structure Models Approach," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
- Xinyu Zhang & Hua Liang & Anna Liu & David Ruppert & Guohua Zou, 2016. "Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 275-291, March.
- Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.
- Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
- Francis K. C. Hui & Samuel Müller & A. H. Welsh, 2017. "Joint Selection in Mixed Models using Regularized PQL," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1323-1333, July.
- Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
- Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
More about this item
Keywords
Generalized linear mixed model; Multilevel model; Ordinal response; Random effect;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:88:y:2015:i:c:p:173-186. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.