IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v70y2016i3p250-256.html
   My bibliography  Save this article

Calibrated Bayes Factors in Assessing Genetic Association Models

Author

Listed:
  • J. G. Liao
  • Duanping Liao
  • Arthur Berg

Abstract

Three competing genetic models—additive, dominant, and recessive—are often considered in genetic association analysis. We propose and develop a calibrated Bayes approach for comparing these competing models that has the desired property of giving equal support to the three models when no genetic association is present. The naïve approach with noncalibrated priors is shown to produce misleading Bayes factors. The method is fully developed with simulation studies, real data analyses, and an efficient algorithm based on an asymptotic approximation. An illuminating connection to the Kullback–Leibler divergence is also established. The proposed calibrated prior can serve as a reference prior for a genetic association study or as a common baseline prior for comparing Bayes analyses of different datasets.

Suggested Citation

  • J. G. Liao & Duanping Liao & Arthur Berg, 2016. "Calibrated Bayes Factors in Assessing Genetic Association Models," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 250-256, July.
  • Handle: RePEc:taf:amstat:v:70:y:2016:i:3:p:250-256
    DOI: 10.1080/00031305.2015.1109548
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2015.1109548
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2015.1109548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Little, Roderick J., 2006. "Calibrated Bayes: A Bayes/Frequentist Roadmap," The American Statistician, American Statistical Association, vol. 60, pages 213-223, August.
    2. J. G. Liao, 1999. "A Hierarchical Bayesian Model for Combining Multiple 2 × 2 Tables Using Conditional Likelihoods," Biometrics, The International Biometric Society, vol. 55(1), pages 268-272, March.
    3. Sinharay S. & Stern H.S., 2002. "On the Sensitivity of Bayes Factors to the Prior Distributions," The American Statistician, American Statistical Association, vol. 56, pages 196-201, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. A. S. Fraser & N. Reid & E. Marras & G. Y. Yi, 2010. "Default priors for Bayesian and frequentist inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 631-654, November.
    2. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    3. David Kaplan & Chansoon Lee, 2018. "Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments," Evaluation Review, , vol. 42(4), pages 423-457, August.
    4. Perry J. Williams & Cody Schroeder & Pat Jackson, 2020. "Estimating Reproduction and Survival of Unmarked Juveniles Using Aerial Images and Marked Adults," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 133-147, June.
    5. Stavros Nikolakopoulos & Ingeborg van der Tweel & Kit C. B. Roes, 2018. "Dynamic borrowing through empirical power priors that control type I error," Biometrics, The International Biometric Society, vol. 74(3), pages 874-880, September.
    6. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    7. Yang Song & Yawen Wang & Dahai Jin, 2020. "A Bayesian Approach Based on Bayes Minimum Risk Decision for Reliability Assessment of Web Service Composition," Future Internet, MDPI, vol. 12(12), pages 1-20, December.
    8. Jean-Paul Fox & Joris Mulder & Sandip Sinharay, 2017. "Bayes Factor Covariance Testing in Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 979-1006, December.
    9. David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
    10. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2013. "Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 263(C), pages 244-250.
    11. B. J. Gajewski & R. Lee & M. Bott & U. Piamjariyakul & R. L. Taunton, 2009. "On estimating the distribution of data envelopment analysis efficiency scores: an application to nursing homes' care planning process," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(9), pages 933-944.
    12. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2017. "Reprint of: Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 359(C), pages 461-467.
    13. Lee, Woojoo & Shi, Jian Qing & Lee, Youngjo, 2010. "Approximate conditional inference in mixed-effects models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 173-184, January.
    14. Subbiah, M. & Srinivasan, M.R., 2008. "Classification of 2x2 sparse data sets with zero cells," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3212-3215, December.
    15. Murray Aitkin & Charles Liu, 2018. "Confidence, credibility and prediction," METRON, Springer;Sapienza Università di Roma, vol. 76(2), pages 251-268, August.
    16. Chun Asaph Young & Schouten Barry & Wagner James, 2017. "JOS Special Issue on Responsive and Adaptive Survey Design: Looking Back to See Forward – Editorial: In Memory of Professor Stephen E. Fienberg, 1942–2016," Journal of Official Statistics, Sciendo, vol. 33(3), pages 571-577, September.
    17. John Geweke, 2007. "Bayesian Model Comparison and Validation," American Economic Review, American Economic Association, vol. 97(2), pages 60-64, May.
    18. Carles Serrat & Montserrat Ru� & Carmen Armero & Xavier Piulachs & H�ctor Perpi��n & Anabel Forte & �lvaro P�ez & Guadalupe G�mez, 2015. "Frequentist and Bayesian approaches for a joint model for prostate cancer risk and longitudinal prostate-specific antigen data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1223-1239, June.
    19. Sheng, Yanyan, 2008. "Markov Chain Monte Carlo Estimation of Normal Ogive IRT Models in MATLAB," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i08).
    20. West Brady T. & Sakshaug Joseph W. & Aurelien Guy Alain S., 2018. "Accounting for Complex Sampling in Survey Estimation: A Review of Current Software Tools," Journal of Official Statistics, Sciendo, vol. 34(3), pages 721-752, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:70:y:2016:i:3:p:250-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.