IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i4p858-862.html
   My bibliography  Save this article

Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods

Author

Listed:
  • Duchesne, Pierre
  • Lafaye De Micheaux, Pierre

Abstract

Liu, Tang and Zhang [Liu, H. Tang, Y., Zhang H.H. 2009. A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Computational Statistics & Data Analysis 53, 853-856] proposed a chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. To approximate the distribution of interest, they used a non-central chi-square distribution, where the degrees of freedom and the non-centrality parameter were calculated using the first four cumulants of the quadratic form. Numerical examples were encouraging, suggesting that the approximation was particularly accurate in the upper tail of the distribution. We present here additional empirical evidence, comparing Liu-Tang-Zhang's four-moment non-central chi-square approximation with exact methods. While the moment-based method is interesting because of its simplicity, we demonstrate that it should be used with care in practical work, since numerical examples suggest that significant differences may occur between that method and exact methods, even in the upper tail of the distribution.

Suggested Citation

  • Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:4:p:858-862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00438-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pena D. & Rodriguez J., 2002. "A Powerful Portmanteau Test of Lack of Fit for Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 601-610, June.
    2. Robert B. Davies, 1980. "The Distribution of a Linear Combination of χ2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 323-333, November.
    3. R. W. Farebrother, 1984. "The Distribution of a Positive Linear Combination of X2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(3), pages 332-339, November.
    4. R. W. Farebrother, 1990. "The Distribution of a Quadratic Form in Normal Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(2), pages 294-309, June.
    5. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    6. Liu, Huan & Tang, Yongqiang & Zhang, Hao Helen, 2009. "A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 853-856, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Tong & Lumley, Thomas, 2019. "Numerical evaluation of methods approximating the distribution of a large quadratic form in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 75-81.
    2. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2022. "Data-driven portmanteau tests for time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 675-698, September.
    3. Sanae Rujivan & Athinan Sutchada & Kittisak Chumpong & Napat Rujeerapaiboon, 2023. "Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimens," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
    4. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    5. Saralees Nadarajah & Samuel Kotz, 2007. "On the Linear Combination of Laplace and Logistic Random Variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(2), pages 185-194.
    6. Sneek, J.M. & Smits, J., 1990. "An approximation to the distribution of quadratic forms in many normal variables," Serie Research Memoranda 0049, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    7. Boubacar Mainassara, Yacouba, 2010. "Selection of weak VARMA models by Akaïke's information criteria," MPRA Paper 23412, University Library of Munich, Germany.
    8. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    9. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.
    10. Dalla, Violetta & Giraitis, Liudas & Phillips, Peter C. B., 2022. "Robust Tests For White Noise And Cross-Correlation," Econometric Theory, Cambridge University Press, vol. 38(5), pages 913-941, October.
    11. Zimmer, Zachary & Park, DoHwan & Mathew, Thomas, 2016. "Tolerance limits under normal mixtures: Application to the evaluation of nuclear power plant safety and to the assessment of circular error probable," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 304-315.
    12. Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Adrian Wai-Kong Cheung & Jen-Je Su & Astrophel Kim Choo, 2011. "Are Euro exchange rates markets efficient? New evidence from a large panel," Discussion Papers in Finance finance:201109, Griffith University, Department of Accounting, Finance and Economics.
    14. Fred Huffer & Cheolyong Park, 2000. "A test for multivariate structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 633-650.
    15. Fahim Afzal & Pan Haiying & Farman Afzal & Asif Mahmood & Amir Ikram, 2021. "Value-at-Risk Analysis for Measuring Stochastic Volatility of Stock Returns: Using GARCH-Based Dynamic Conditional Correlation Model," SAGE Open, , vol. 11(1), pages 21582440211, March.
    16. Nicolas Pesci & Jean-Philippe Aguilar & Victor James & Fabien Rouillé, 2022. "Inflation Forecasts and European Asset Returns: A Regime-Switching Approach," JRFM, MDPI, vol. 15(10), pages 1-20, October.
    17. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    18. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 107420, University Library of Munich, Germany.
    19. F. Javier Mencía & Enrique Sentana, 2004. "Estimation and Testing of Dynamic Models with Generalised Hyperbolic Innovations," Working Papers wp2004_0411, CEMFI.
    20. David Lamparter & Daniel Marbach & Rico Rueedi & Zoltán Kutalik & Sven Bergmann, 2016. "Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:4:p:858-862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.