IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v180y2023ics0167947322002602.html
   My bibliography  Save this article

The multi-aspect tests in the presence of ties

Author

Listed:
  • Yamaguchi, Hikaru
  • Murakami, Hidetoshi

Abstract

The two-sample problem is one of the most important topics in various fields, such as biomedical experiments and product quality maintenance. The Lepage-type test, which is the sum of squares of standardized linear rank statistics, has often been used in the location-scale shift model. Recently, the Lepage-type test has been applied to the joint location-scale and joint location-scale-shape problems. In this study, the test statistics based on the Euclidean distance and Mahalanobis distance of standardized linear rank statistics are considered in the presence of ties. The moments of these test statistics are calculated by deriving the moment-generating function of the vector of linear rank statistics. Moreover, the gamma approximation based on these moments is compared with the chi-square approximation based on the limiting null distribution. Simulation studies and data examples demonstrate the usefulness of gamma approximation in the case of small sample sizes.

Suggested Citation

  • Yamaguchi, Hikaru & Murakami, Hidetoshi, 2023. "The multi-aspect tests in the presence of ties," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:csdana:v:180:y:2023:i:c:s0167947322002602
    DOI: 10.1016/j.csda.2022.107680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322002602
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Zhi & Mukherjee, Amitava & Liu, Yanchun & Zhang, Jiujun, 2019. "Optimizing joint location-scale monitoring – An adaptive distribution-free approach with minimal loss of information," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1019-1036.
    2. Amitava Mukherjee & Marco Marozzi, 2019. "A class of percentile modified Lepage-type tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 657-689, August.
    3. Hidetoshi Murakami, 2016. "A moment generating function of a combination of linear rank tests and its asymptotic efficiency," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 674-691, December.
    4. Mukherjee, Amitava & Sen, Rudra, 2018. "Optimal design of Shewhart–Lepage type schemes and its application in monitoring service quality," European Journal of Operational Research, Elsevier, vol. 266(1), pages 147-167.
    5. Liu, Huan & Tang, Yongqiang & Zhang, Hao Helen, 2009. "A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 853-856, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhi & Mukherjee, Amitava & Zhang, Jiujun, 2021. "Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment," European Journal of Operational Research, Elsevier, vol. 289(1), pages 177-196.
    2. Zimmer, Zachary & Park, DoHwan & Mathew, Thomas, 2016. "Tolerance limits under normal mixtures: Application to the evaluation of nuclear power plant safety and to the assessment of circular error probable," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 304-315.
    3. Muhammad Riaz & Muhammad Abid & Hafiz Zafar Nazir & Saddam Akber Abbasi, 2019. "An enhanced nonparametric EWMA sign control chart using sequential mechanism," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
    4. Sanae Rujivan & Athinan Sutchada & Kittisak Chumpong & Napat Rujeerapaiboon, 2023. "Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimens," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
    5. Xuemei Hu & Xiaohui Liu, 2013. "Empirical likelihood confidence regions for semi-varying coefficient models with linear process errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 161-180, March.
    6. Qianchuan He & Yang Liu & Ulrike Peters & Li Hsu, 2018. "Multivariate association analysis with somatic mutation data," Biometrics, The International Biometric Society, vol. 74(1), pages 176-184, March.
    7. Songhua Tan & Qianqian Zhu, 2022. "Asymmetric linear double autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 371-388, May.
    8. Rolando Rubilar-Torrealba & Karime Chahuán-Jiménez & Hanns de la Fuente-Mella, 2022. "Analysis of the Growth in the Number of Patents Granted and Its Effect over the Level of Growth of the Countries: An Econometric Estimation of the Mixed Model Approach," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    9. Nguyen, H.D. & Tran, K.P. & Tran, K.D., 2021. "The effect of measurement errors on the performance of the Exponentially Weighted Moving Average control charts for the Ratio of Two Normally Distributed Variables," European Journal of Operational Research, Elsevier, vol. 293(1), pages 203-218.
    10. Eftychia Mamzeridou & Athanasios C. Rakitzis, 2023. "A Combined Runs Rules Scheme for Monitoring General Inflated Poisson Processes," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    11. Solberger, M. & Zhou, X., 2013. "LM-type tests for idiosyncratic and common unit roots in the exact factor model with AR(1) dynamics," Research Memorandum 059, Maastricht University, Graduate School of Business and Economics (GSBE).
    12. Chenhua Li & Gary M. Gaukler & Yu Ding, 2013. "Using container inspection history to improve interdiction logistics for illicit nuclear materials," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 433-448, September.
    13. Huang, Peng & Gu, Yingkui & Li, He & Yazdi, Mohammad & Qiu, Guangqi, 2023. "An Optimal Tolerance Design Approach of Robot Manipulators for Positioning Accuracy Reliability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Zhidong Bai & Guangming Pan & Yanqing Yin, 2018. "A central limit theorem for sums of functions of residuals in a high-dimensional regression model with an application to variance homoscedasticity test," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 896-920, December.
    15. Song, Zhi & Mukherjee, Amitava & Liu, Yanchun & Zhang, Jiujun, 2019. "Optimizing joint location-scale monitoring – An adaptive distribution-free approach with minimal loss of information," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1019-1036.
    16. Hui-Guo Zhang & Chang-Lin Mei, 2017. "Discussion," International Statistical Review, International Statistical Institute, vol. 85(1), pages 38-40, April.
    17. Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
    18. Wei Dai & Ming Yang & Chaolong Wang & Tianxi Cai, 2017. "Sequence robust association test for familial data," Biometrics, The International Biometric Society, vol. 73(3), pages 876-884, September.
    19. Chen, Tong & Lumley, Thomas, 2019. "Numerical evaluation of methods approximating the distribution of a large quadratic form in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 75-81.
    20. Johannssen, Arne & Chukhrova, Nataliya & Castagliola, Philippe, 2022. "The performance of the hypergeometric np chart with estimated parameter," European Journal of Operational Research, Elsevier, vol. 296(3), pages 873-899.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:180:y:2023:i:c:s0167947322002602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.