IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v24y2012i3p715-731.html
   My bibliography  Save this article

Weighted quantile regression for AR model with infinite variance errors

Author

Listed:
  • Zhao Chen
  • Runze Li
  • Yaohua Wu

Abstract

Autoregressive (AR) models with finite variance errors have been well studied. This paper is concerned with AR models with heavy-tailed errors, which is useful in various scientific research areas. Statistical estimation for AR models with infinite variance errors is very different from those for AR models with finite variance errors. In this paper, we consider a weighted quantile regression for AR models to deal with infinite variance errors. We further propose an induced smoothing method to deal with computational challenges in weighted quantile regression. We show that the difference between weighted quantile regression estimate and its smoothed version is negligible. We further propose a test for linear hypothesis on the regression coefficients. We conduct Monte Carlo simulation study to assess the finite sample performance of the proposed procedures. We illustrate the proposed methodology by an empirical analysis of a real-life data set.

Suggested Citation

  • Zhao Chen & Runze Li & Yaohua Wu, 2012. "Weighted quantile regression for AR model with infinite variance errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 715-731.
  • Handle: RePEc:taf:gnstxx:v:24:y:2012:i:3:p:715-731
    DOI: 10.1080/10485252.2012.698280
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2012.698280
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2012.698280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    2. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    3. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    4. Shiqing Ling, 2005. "Self‐weighted least absolute deviation estimation for infinite variance autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 381-393, June.
    5. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    6. An, Hong-Zhi & Chen, Zhao-guo, 1982. "On convergence of LAD estimates in autoregression with infinite variance," Journal of Multivariate Analysis, Elsevier, vol. 12(3), pages 335-345, September.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Davis, Richard A. & Knight, Keith & Liu, Jian, 1992. "M-estimation for autoregressions with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 145-180, February.
    9. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(1), pages 46-68, March.
    10. Koul, H. L. & Mukherjee, K., 1994. "Regression Quantiles and Related Processes Under Long Range Dependent Errors," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 318-337, November.
    11. Yang, Xiao Rong & Zhang, Li Xin, 2008. "A note on self-weighted quantile estimation for infinite variance quantile autoregression models," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2731-2738, November.
    12. Wang, You-Gan & Shao, Quanxi & Zhu, Min, 2009. "Quantile regression without the curse of unsmoothness," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3696-3705, August.
    13. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Yao & Wei Yu & Xuejun Wang, 2023. "Strong Consistency for the Conditional Self-weighted M Estimator of GRCA(p) Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-21, March.
    2. Marcel Carcea & Robert Serfling, 2015. "A Gini Autocovariance Function for Time Series Modelling," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 817-838, November.
    3. Xinghui Wang & Shuhe Hu, 2017. "Asymptotics of self-weighted M-estimators for autoregressive models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 83-92, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    2. Zhu, Qianqian & Zheng, Yao & Li, Guodong, 2018. "Linear double autoregression," Journal of Econometrics, Elsevier, vol. 207(1), pages 162-174.
    3. Xinghui Wang & Shuhe Hu, 2017. "Asymptotics of self-weighted M-estimators for autoregressive models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 83-92, January.
    4. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
    5. Lijuan Huo & Tae-Hwan Kim & Yunmi Kim, 2013. "Testing for Autocorrelation in Quantile Regression Models," Working papers 2013rwp-54, Yonsei University, Yonsei Economics Research Institute.
    6. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    7. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
    8. Cai, Yuzhi, 2007. "A quantile approach to US GNP," Economic Modelling, Elsevier, vol. 24(6), pages 969-979, November.
    9. Zernov, Serguei & Zinde-Walsh, Victoria & Galbraith, John W., 2009. "Asymptotics for estimation of quantile regressions with truncated infinite-dimensional processes," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 497-508, March.
    10. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    11. Kato, Kengo, 2009. "Asymptotics for argmin processes: Convexity arguments," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1816-1829, September.
    12. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    13. Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.
    14. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    15. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    16. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    17. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    18. Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2011. "Of Copulas, Quantiles, Ranks and Spectra - An L1-Approach to Spectral Analysis," Working Papers ECARES ECARES 2011-038, ULB -- Universite Libre de Bruxelles.
    19. repec:wyi:journl:002126 is not listed on IDEAS
    20. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    21. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:24:y:2012:i:3:p:715-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.