IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i1p176-188.html
   My bibliography  Save this article

Polynomial spline estimation of partially linear single-index proportional hazards regression models

Author

Listed:
  • Sun, Jie
  • Kopciuk, Karen A.
  • Lu, Xuewen

Abstract

The Cox proportional hazards (PH) model usually assumes linearity of the covariates on the log hazard function, which may be violated because linearity cannot always be guaranteed. We propose a partially linear single-index proportional hazards regression model, which can model both linear and nonlinear covariate effects on the log hazard in the proportional hazards model. We adopt a polynomial spline smoothing technique to model the structured nonparametric single-index component for the nonlinear covariate effects. This method can reduce the dimensionality of the covariates being modeled, while, at the same time, can provide efficient estimates of the covariate effects. A two-step iterative algorithm to estimate the nonparametric component and the covariate effects is used for facilitating implementation. Asymptotic properties of the estimators are derived. Monte Carlo simulation studies are presented to compare the new method with the standard Cox linear PH model and some other comparable models. A case study with clinical trial data is presented for illustration.

Suggested Citation

  • Sun, Jie & Kopciuk, Karen A. & Lu, Xuewen, 2008. "Polynomial spline estimation of partially linear single-index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 176-188, September.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:176-188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00338-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gørgens, Tue, 2004. "Average Derivatives For Hazard Functions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 437-463, June.
    2. Nielsen, Jens P. & Linton, Oliver & Bickel, Peter J., 1998. "On a semiparametric survival model with flexible covariate effect," LSE Research Online Documents on Economics 301, London School of Economics and Political Science, LSE Library.
    3. Jianhua Z. Huang & Linxu Liu, 2006. "Polynomial Spline Estimation and Inference of Proportional Hazards Regression Models with Flexible Relative Risk Form," Biometrics, The International Biometric Society, vol. 62(3), pages 793-802, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jianbo & Zhang, Riquan, 2011. "Partially varying coefficient single index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 389-400, January.
    2. Ming-Yueh Huang & Kwun Chuen Gary Chan, 2022. "Model selection among Dimension-Reduced generalized Cox models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 492-511, July.
    3. Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
    4. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    5. Shang, Shulian & Liu, Mengling & Zeleniuch-Jacquotte, Anne & Clendenen, Tess V. & Krogh, Vittorio & Hallmans, Goran & Lu, Wenbin, 2013. "Partially linear single index Cox regression model in nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 199-212.
    6. Raheem, S.M. Enayetur & Ahmed, S. Ejaz & Doksum, Kjell A., 2012. "Absolute penalty and shrinkage estimation in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 874-891.
    7. Lu, Xuewen & Pordeli, Pooneh & Burke, Murray D. & Song, Peter X.-K., 2016. "Partially linear single-index proportional hazards model with current status data," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 14-36.
    8. Myeonggyun Lee & Andrea B. Troxel & Mengling Liu, 2024. "Partial-linear single-index transformation models with censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 701-720, October.
    9. Lian, Heng & Li, Jianbo & Hu, Yuao, 2013. "Shrinkage variable selection and estimation in proportional hazards models with additive structure and high dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 99-112.
    10. Lin Liu & Jianbo Li & Riquan Zhang, 2014. "General partially linear additive transformation model with right-censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2257-2269, October.
    11. Heng Lian & Peng Lai & Hua Liang, 2013. "Partially Linear Structure Selection in Cox Models with Varying Coefficients," Biometrics, The International Biometric Society, vol. 69(2), pages 348-357, June.
    12. Chin-Shang Li & Minggen Lu, 2018. "A lack-of-fit test for generalized linear models via single-index techniques," Computational Statistics, Springer, vol. 33(2), pages 731-756, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xuewen, 2010. "Asymptotic distributions of two "synthetic data" estimators for censored single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 999-1015, April.
    2. Li, Jianbo & Zhang, Riquan, 2011. "Partially varying coefficient single index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 389-400, January.
    3. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    4. Minggen Lu & Dana Loomis, 2013. "Spline-based semiparametric estimation of partially linear Poisson regression with single-index models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 905-922, December.
    5. Lan Xue & Hua Liang, 2010. "Polynomial Spline Estimation for a Generalized Additive Coefficient Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 26-46, March.
    6. Chiang, Chin-Tsang & Huang, Ming-Yueh, 2012. "New estimation and inference procedures for a single-index conditional distribution model," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 271-285.
    7. Qingming Zou & Zhongyi Zhu, 2014. "M-estimators for single-index model using B-spline," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 225-246, February.
    8. Minggen Lu, 2018. "Spline-based quasi-likelihood estimation of mixed Poisson regression with single-index models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(1), pages 1-17, January.
    9. Spierdijk, Laura, 2008. "Nonparametric conditional hazard rate estimation: A local linear approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2419-2434, January.
    10. Yu, Lili & Zhao, Yichuan, 2024. "Laplace approximated quasi-likelihood method for heteroscedastic survival data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    11. Lili Yu & Liang Liu & Ding-Geng Chen, 2019. "A homoscedasticity test for the accelerated failure time model," Computational Statistics, Springer, vol. 34(1), pages 433-446, March.
    12. Xuewen Lu & Jie Sun & Yongcheng Qi, 2008. "Empirical likelihood for average derivatives of hazard regression functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(1), pages 93-112, January.
    13. Chin-Shang Li & Minggen Lu, 2018. "A lack-of-fit test for generalized linear models via single-index techniques," Computational Statistics, Springer, vol. 33(2), pages 731-756, June.
    14. Myeonggyun Lee & Andrea B. Troxel & Mengling Liu, 2024. "Partial-linear single-index transformation models with censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 701-720, October.
    15. Wang, Yijun & Wang, Weiwei & Zhao, Xiaobing, 2022. "Local logarithm partial likelihood estimation of panel count data model with an unknown link function," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    16. Grace Yi & Wenqing He & Hua Liang, 2011. "Semiparametric marginal and association regression methods for clustered binary data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 511-533, June.
    17. Muggeo, Vito M.R. & Ferrara, Giancarlo, 2008. "Fitting generalized linear models with unspecified link function: A P-spline approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2529-2537, January.
    18. Ming-Yueh Huang & Kwun Chuen Gary Chan, 2022. "Model selection among Dimension-Reduced generalized Cox models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 492-511, July.
    19. van den Berg, Gerard. J. & Janys, Lena & Mammen, Enno & Nielsen, Jens Perch, 2021. "A general semiparametric approach to inference with marker-dependent hazard rate models," Journal of Econometrics, Elsevier, vol. 221(1), pages 43-67.
    20. Lu, Xuewen & Cheng, Tsung-Lin, 2007. "Randomly censored partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1895-1922, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:176-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.