IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v190y2024ics0167947323001706.html
   My bibliography  Save this article

Laplace approximated quasi-likelihood method for heteroscedastic survival data

Author

Listed:
  • Yu, Lili
  • Zhao, Yichuan

Abstract

The classical accelerated failure time model is the major linear model for right censored survival data. It requires the survival data to exhibit homoscedasticity of variance and excludes heteroscedastic survival data that are often seen in practical applications. The least squares method for the classical accelerated failure time model has been extended to accommodate the heteroscedasticity in survival data. However, the estimating equations are discrete and hence they are time consuming and may not be feasible for large datasets. This paper proposes a Laplace approximated quasi-likelihood method with a continuous estimating equation. It utilizes the Laplace approximation to approximate the survival function in the quasi-likelihood, in which the variance function is approximated by a spline function. Then it shows the asymptotic distribution of the Laplace approximated estimator, its estimation bias and the formula for confidence interval estimation for the parameter of interest. The finite sample performance of the proposed approach is evaluated through simulation studies and follows real data examples for illustration.

Suggested Citation

  • Yu, Lili & Zhao, Yichuan, 2024. "Laplace approximated quasi-likelihood method for heteroscedastic survival data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:csdana:v:190:y:2024:i:c:s0167947323001706
    DOI: 10.1016/j.csda.2023.107859
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323001706
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Donglin & Lin, D.Y., 2007. "Efficient Estimation for the Accelerated Failure Time Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1387-1396, December.
    2. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    3. Mai Zhou, 2005. "Empirical likelihood analysis of the rank estimator for the censored accelerated failure time model," Biometrika, Biometrika Trust, vol. 92(2), pages 492-498, June.
    4. Chen, Songnian & Khan, Shakeeb, 2000. "Estimating censored regression models in the presence of nonparametric multiplicative heteroskedasticity," Journal of Econometrics, Elsevier, vol. 98(2), pages 283-316, October.
    5. Wanrong Liu & Xuewen Lu, 2009. "Weighted least squares method for censored linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 787-799.
    6. Matthew C. Harding & Jerry Hausman, 2007. "Using A Laplace Approximation To Estimate The Random Coefficients Logit Model By Nonlinear Least Squares," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1311-1328, November.
    7. Cédric Heuchenne & Ingrid Keilegom, 2007. "Polynomial Regression with Censored Data based on Preliminary Nonparametric Estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 273-297, June.
    8. Yu, Lili & Peace, Karl E., 2012. "Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2675-2687.
    9. Lili Yu & Liang Liu & Ding-Geng(Din) Chen, 2013. "Weighted Least-Squares Method for Right-Censored Data in Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 69(2), pages 358-365, June.
    10. Jianhua Z. Huang & Linxu Liu, 2006. "Polynomial Spline Estimation and Inference of Proportional Hazards Regression Models with Flexible Relative Risk Form," Biometrics, The International Biometric Society, vol. 62(3), pages 793-802, September.
    11. Heller, Glenn, 2007. "Smoothed Rank Regression With Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 552-559, June.
    12. Zhezhen Jin & D. Y. Lin & Zhiliang Ying, 2006. "On least-squares regression with censored data," Biometrika, Biometrika Trust, vol. 93(1), pages 147-161, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Yu & Liang Liu & Ding-Geng Chen, 2019. "A homoscedasticity test for the accelerated failure time model," Computational Statistics, Springer, vol. 34(1), pages 433-446, March.
    2. Lili Yu & Liang Liu & Ding-Geng(Din) Chen, 2013. "Weighted Least-Squares Method for Right-Censored Data in Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 69(2), pages 358-365, June.
    3. Yu, Lili & Peace, Karl E., 2012. "Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2675-2687.
    4. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    5. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    6. Lu, Xuewen, 2010. "Asymptotic distributions of two "synthetic data" estimators for censored single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 999-1015, April.
    7. Fan, Caiyun & Lu, Wenbin & Zhou, Yong, 2021. "Testing error heterogeneity in censored linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    8. Zou, Yubo & Zhang, Jiajia & Qin, Guoyou, 2011. "A semiparametric accelerated failure time partial linear model and its application to breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1479-1487, March.
    9. Yijian Huang, 2013. "Fast Censored Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 789-806, December.
    10. Zhang, Jiajia & Peng, Yingwei, 2009. "Crossing hazard functions in common survival models," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2124-2130, October.
    11. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    12. Ying Ding & Bin Nan, 2015. "Estimating Mean Survival Time: When is it Possible?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 397-413, June.
    13. Jeongjin Lee & Taehwa Choi & Sangbum Choi, 2024. "Censored broken adaptive ridge regression in high-dimension," Computational Statistics, Springer, vol. 39(6), pages 3457-3482, September.
    14. Longlong Huang & Karen Kopciuk & Xuewen Lu, 2018. "Smoothed Jackknife Empirical Likelihood for Weighted Rank Regression with Censored Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 48-67, April.
    15. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    16. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    17. Choi, Taehwa & Kim, Arlene K.H. & Choi, Sangbum, 2021. "Semiparametric least-squares regression with doubly-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    18. Ritesh Ramchandani & Dianne M. Finkelstein & David A. Schoenfeld, 2020. "Estimation for an accelerated failure time model with intermediate states as auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 1-20, January.
    19. Jian-Jian Ren & Yiming Lyu, 2024. "Weighted Empirical Likelihood for Accelerated Life Model with Various Types of Censored Data," Stats, MDPI, vol. 7(3), pages 1-11, September.
    20. Min Zhang & Marie Davidian, 2008. "“Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data," Biometrics, The International Biometric Society, vol. 64(2), pages 567-576, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:190:y:2024:i:c:s0167947323001706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.