IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v77y2014i2p225-246.html
   My bibliography  Save this article

M-estimators for single-index model using B-spline

Author

Listed:
  • Qingming Zou
  • Zhongyi Zhu

Abstract

The single-index model is an important tool in multivariate nonparametric regression. This paper deals with M-estimators for the single-index model. Unlike the existing M-estimator for the single-index model, the unknown link function is approximated by B-spline and M-estimators for the parameter and the nonparametric component are obtained in one step. The proposed M-estimator of unknown function is shown to attain the convergence rate as that of the optimal global rate of convergence of estimators for nonparametric regression according to Stone (Ann Stat 8:1348–1360, 1980 ; Ann Stat 10:1040–1053, 1982 ), and the M-estimator of parameter is $$\sqrt{n}$$ -consistent and asymptotically normal. A small sample simulation study showed that the M-estimators proposed in this paper are robust. An application to real data illustrates the estimator’s usefulness. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Qingming Zou & Zhongyi Zhu, 2014. "M-estimators for single-index model using B-spline," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 225-246, February.
  • Handle: RePEc:spr:metrik:v:77:y:2014:i:2:p:225-246
    DOI: 10.1007/s00184-013-0434-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-013-0434-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-013-0434-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    2. Naisyin Wang, 2003. "Marginal nonparametric kernel regression accounting for within-subject correlation," Biometrika, Biometrika Trust, vol. 90(1), pages 43-52, March.
    3. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    4. Jiti Gao & Hua Liang, 1997. "Statistical Inference in Single-Index and Partially Nonlinear Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 493-517, September.
    5. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    6. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    7. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    8. Li, Jianbo & Zhang, Riquan, 2011. "Partially varying coefficient single index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 389-400, January.
    9. Prasad Naik & Chih‐Ling Tsai, 2000. "Partial least squares estimator for single‐index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 763-771.
    10. Wu, Tracy Z. & Yu, Keming & Yu, Yan, 2010. "Single-index quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1607-1621, August.
    11. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    12. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    13. Jianhua Z. Huang & Linxu Liu, 2006. "Polynomial Spline Estimation and Inference of Proportional Hazards Regression Models with Flexible Relative Risk Form," Biometrics, The International Biometric Society, vol. 62(3), pages 793-802, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogui Li & Jianbao Chen & Shuangshuang Li, 2023. "Estimation of Fixed Effects Partially Linear Varying Coefficient Panel Data Regression Model with Nonseparable Space-Time Filters," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    2. Bogui Li & Jianbao Chen & Hao Chen, 2024. "Estimation of fixed effects semiparametric single-index panel model with spatio-temporal correlated errors," Statistical Papers, Springer, vol. 65(8), pages 4915-4953, October.
    3. Han, Jinyue & Wang, Jun & Gao, Wei & Tang, Man-Lai, 2023. "Estimation of the directions for unknown parameters in semiparametric models," MPRA Paper 116365, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
    2. Shang, Shulian & Liu, Mengling & Zeleniuch-Jacquotte, Anne & Clendenen, Tess V. & Krogh, Vittorio & Hallmans, Goran & Lu, Wenbin, 2013. "Partially linear single index Cox regression model in nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 199-212.
    3. Jiang, Rong & Zhou, Zhan-Gong & Qian, Wei-Min & Chen, Yong, 2013. "Two step composite quantile regression for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 180-191.
    4. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Xu, Peirong & Zhu, Lixing, 2012. "Estimation for a marginal generalized single-index longitudinal model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 285-299.
    6. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    7. Chin-Shang Li & Minggen Lu, 2018. "A lack-of-fit test for generalized linear models via single-index techniques," Computational Statistics, Springer, vol. 33(2), pages 731-756, June.
    8. Rong Jiang & Wei-Min Qian & Zhan-Gong Zhou, 2016. "Single-index composite quantile regression with heteroscedasticity and general error distributions," Statistical Papers, Springer, vol. 57(1), pages 185-203, March.
    9. Jiang, Rong & Qian, Wei-Min & Zhou, Zhan-Gong, 2016. "Weighted composite quantile regression for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 34-48.
    10. Liu, Jicai & Zhang, Riquan & Zhao, Weihua & Lv, Yazhao, 2013. "A robust and efficient estimation method for single index models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 226-238.
    11. Bousebata, Meryem & Enjolras, Geoffroy & Girard, Stéphane, 2023. "Extreme partial least-squares," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    12. Lin, Wei & Kulasekera, K.B., 2010. "Testing the equality of linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1156-1167, May.
    13. Qingming Zou & Zhongyi Zhu & Jinglong Wang, 2009. "Local influence analysis for penalized Gaussian likelihood estimation in partially linear single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 905-918, December.
    14. Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
    15. Claudio Agostinelli & Ana M. Bianco & Graciela Boente, 2020. "Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 855-893, June.
    16. Lu, Xuewen, 2010. "Asymptotic distributions of two "synthetic data" estimators for censored single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 999-1015, April.
    17. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    18. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    19. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    20. Wai-Yin Poon & Hai-Bin Wang, 2014. "Multivariate partially linear single-index models: Bayesian analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 755-768, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:77:y:2014:i:2:p:225-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.