IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v20y2004i03p437-463_20.html
   My bibliography  Save this article

Average Derivatives For Hazard Functions

Author

Listed:
  • Gørgens, Tue

Abstract

This paper develops semiparametric kernel-based estimators of risk-specific hazard functions for competing risks data. Both discrete and continuous failure times are considered. The maintained assumption is that the hazard function depends on explanatory variables only through an index. In contrast to existing semiparametric estimators, proportional hazards is not assumed. The new estimators are asymptotically normally distributed. The estimator of index coefficients is root-n consistent. The estimator of hazard functions achieves the one-dimensional rate of convergence. Thus the index assumption eliminates the “curse of dimensionality.” The estimators perform well in Monte Carlo experiments.I thank Denise Doiron for stimulating my interest in this research project and Catherine de Fontenay, Hans Christian Kongsted, Lars Muus, seminar participants, and two anonymous referees for comments on an earlier version of the paper. I gratefully acknowledge the hospitality of the University of Aarhus and the University of Copenhagen, where part of this research was undertaken.

Suggested Citation

  • Gørgens, Tue, 2004. "Average Derivatives For Hazard Functions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 437-463, June.
  • Handle: RePEc:cup:etheor:v:20:y:2004:i:03:p:437-463_20
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466604203012/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Xuewen, 2010. "Asymptotic distributions of two "synthetic data" estimators for censored single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 999-1015, April.
    2. Lu, Xuewen & Cheng, Tsung-Lin, 2007. "Randomly censored partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1895-1922, November.
    3. Chin-Tsang Chiang & Shao-Hsuan Wang & Ming-Yueh Huang, 2018. "Versatile estimation in censored single-index hazards regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 523-551, June.
    4. Li, Jianbo & Zhang, Riquan, 2011. "Partially varying coefficient single index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 389-400, January.
    5. Chiang, Chin-Tsang & Huang, Ming-Yueh, 2012. "New estimation and inference procedures for a single-index conditional distribution model," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 271-285.
    6. Sun, Jie & Kopciuk, Karen A. & Lu, Xuewen, 2008. "Polynomial spline estimation of partially linear single-index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 176-188, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:20:y:2004:i:03:p:437-463_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.