IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/nt2yq_v1.html
   My bibliography  Save this paper

A Grid Based Approach to Analysing Spatial Weighting Matrix Specification

Author

Listed:
  • Rahal, Charles

Abstract

We outline a grid-based approach to provide further evidence against the misconception that the results of spatial econometric models are sensitive to the exact specification of the exogenously set weighting matrix (otherwise known as the 'biggest myth in spatial econometrics'). Our application estimates three large sets of specifications using an original dataset which contains information on the Prime Central London housing market. We show that while posterior model probabilities may indicate a strong preference for an extremely small number of models, and while the spatial autocorrelation parameter varies substantially, median direct effects remain stable across the entire permissible spatial weighting matrix space. We argue that spatial econometric models should be estimated across this entire space, as opposed to the current convention of merely estimating a cursory number of points for robustness.

Suggested Citation

  • Rahal, Charles, 2019. "A Grid Based Approach to Analysing Spatial Weighting Matrix Specification," SocArXiv nt2yq_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:nt2yq_v1
    DOI: 10.31219/osf.io/nt2yq_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5defe146078b52000c58f196/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/nt2yq_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathleen P. Bell & Nancy E. Bockstael, 2000. "Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 72-82, February.
    2. Can, Ayse & Megbolugbe, Isaac, 1997. "Spatial Dependence and House Price Index Construction," The Journal of Real Estate Finance and Economics, Springer, vol. 14(1-2), pages 203-222, Jan.-Marc.
    3. Thanos, Sotirios & Dubé, Jean & Legros, Diègo, 2016. "Putting time into space: the temporal coherence of spatial applications in the housing market," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 78-88.
    4. Olivier Parent & James Lesage, 2005. "Bayesian Model Averaging for Spatial Econometric Models," Post-Print hal-00375489, HAL.
    5. James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, vol. 2(4), pages 1-33, December.
    6. Pace, R Kelley & Gilley, Otis W, 1997. "Using the Spatial Configuration of the Data to Improve Estimation," The Journal of Real Estate Finance and Economics, Springer, vol. 14(3), pages 333-340, May.
    7. Jean Dub� & Di�go Legros, 2014. "Spatial econometrics and the hedonic pricing model: what about the temporal dimension?," Journal of Property Research, Taylor & Francis Journals, vol. 31(4), pages 333-359, December.
    8. Dubin, Robin A., 1998. "Spatial Autocorrelation: A Primer," Journal of Housing Economics, Elsevier, vol. 7(4), pages 304-327, December.
    9. R. Kelley Pace & James P. LeSage, 2004. "Spatial Statistics and Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 29(2), pages 147-148, September.
    10. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    11. Giuseppe Arbia & Bernard Fingleton, 2008. "New spatial econometric techniques and applications in regional science," Papers in Regional Science, Wiley Blackwell, vol. 87(3), pages 311-317, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahal, Charles, 2019. "A Grid Based Approach to Analysing Spatial Weighting Matrix Specification," SocArXiv nt2yq, Center for Open Science.
    2. Won Kim, Chong & Phipps, Tim T. & Anselin, Luc, 2003. "Measuring the benefits of air quality improvement: a spatial hedonic approach," Journal of Environmental Economics and Management, Elsevier, vol. 45(1), pages 24-39, January.
    3. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    4. David Maddison, 2009. "A Spatio‐temporal Model of Farmland Values," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 171-189, February.
    5. Raymond Y. C. Tse, 2002. "Estimating Neighbourhood Effects in House Prices: Towards a New Hedonic Model Approach," Urban Studies, Urban Studies Journal Limited, vol. 39(7), pages 1165-1180, June.
    6. Antonio Páez & Fei Long & Steven Farber, 2008. "Moving Window Approaches for Hedonic Price Estimation: An Empirical Comparison of Modelling Techniques," Urban Studies, Urban Studies Journal Limited, vol. 45(8), pages 1565-1581, July.
    7. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    8. Demidova, Olga, 2021. "Methods of spatial econometrics and evaluation of government programs effectiveness," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 107-134.
    9. Takafumi Kato, 2020. "Likelihood-based strategies for estimating unknown parameters and predicting missing data in the simultaneous autoregressive model," Journal of Geographical Systems, Springer, vol. 22(1), pages 143-176, January.
    10. Hunt, Len M. & Boxall, Peter & Englin, Jeffrey & Haider, Wolfgang, 2005. "Remote tourism and forest management: a spatial hedonic analysis," Ecological Economics, Elsevier, vol. 53(1), pages 101-113, April.
    11. Song, Yunquan & Liang, Xijun & Zhu, Yanji & Lin, Lu, 2021. "Robust variable selection with exponential squared loss for the spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    12. Ida Ferrara & Stephen McComb & Paul Missios, 2007. "Local Willingness-to-Pay Estimates for the Remediation of the Sydney Tar Ponds in Nova Scotia," Canadian Public Policy, University of Toronto Press, vol. 33(4), pages 441-458, December.
    13. Paliska, Dejan & Drobne, Samo, 2020. "Impact of new motorway on housing prices in rural North-East Slovenia," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Matthew Gnagey & Therese Grijalva, 2018. "The impact of trails on property values: a spatial analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(1), pages 73-97, January.
    15. Palmquist, Raymond B., 2006. "Property Value Models," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 2, chapter 16, pages 763-819, Elsevier.
    16. Kiefer, Hua, 2011. "The house price determination process: Rational expectations with a spatial context," Journal of Housing Economics, Elsevier, vol. 20(4), pages 249-266.
    17. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2005. "Spatial Dependence, Housing Submarkets, and House Prices," FAME Research Paper Series rp151, International Center for Financial Asset Management and Engineering.
    18. Jean Dubé & Diègo Legros & Sotirios Thanos, 2018. "Past price ‘memory’ in the housing market: testing the performance of different spatio-temporal specifications," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(1), pages 118-138, January.
    19. Gawande, Kishore & Jenkins-Smith, Hank, 2001. "Nuclear Waste Transport and Residential Property Values: Estimating the Effects of Perceived Risks," Journal of Environmental Economics and Management, Elsevier, vol. 42(2), pages 207-233, September.
    20. Dubé, Jean & Le Gallo, Julie & Des Rosiers, François & Legros, Diègo & Champagne, Marie-Pier, 2024. "An integrated causal framework to evaluate uplift value with an example on change in public transport supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:nt2yq_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.