IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i1p112-122.html
   My bibliography  Save this article

A semiparametric nonlinear mixed-effects model with non-ignorable missing data and measurement errors for HIV viral data

Author

Listed:
  • Liu, Wei
  • Wu, Lang

Abstract

Semiparametric nonlinear mixed-effects (NLME) models are very flexible in modeling long-term HIV viral dynamics. In practice, statistical analyses are often complicated due to measurement errors and missing data in covariates and non-ignorable missing data in the responses. We consider likelihood methods which simultaneously address measurement error and missing data problems. A real dataset is analyzed in detail, and a simulation study is conducted to evaluate the methods.

Suggested Citation

  • Liu, Wei & Wu, Lang, 2008. "A semiparametric nonlinear mixed-effects model with non-ignorable missing data and measurement errors for HIV viral data," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 112-122, September.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:112-122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00329-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    2. Ke C. & Wang Y., 2001. "Semiparametric Nonlinear Mixed-Effects Models and Their Applications," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1272-1298, December.
    3. Wei Liu & Lang Wu, 2007. "Simultaneous Inference for Semiparametric Nonlinear Mixed-Effects Models with Covariate Measurement Errors and Missing Responses," Biometrics, The International Biometric Society, vol. 63(2), pages 342-350, June.
    4. Vonesh E. F. & Wang H. & Nie L. & Majumdar D., 2002. "Conditional Second-Order Generalized Estimating Equations for Generalized Linear and Nonlinear Mixed-Effects Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 271-283, March.
    5. Wu L., 2002. "A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 955-964, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Arribas-Gil & Rolando De la Cruz & Emilie Lebarbier & Cristian Meza, 2015. "Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators," Biometrics, The International Biometric Society, vol. 71(2), pages 333-343, June.
    2. Jurecková, Jana & Picek, Jan & Saleh, A.K.Md. Ehsanes, 2010. "Rank tests and regression rank score tests in measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3108-3120, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Liang, 2009. "Generalized partially linear mixed-effects models incorporating mismeasured covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 27-46, March.
    2. L. Wu & W. Liu & X. J. Hu, 2010. "Joint Inference on HIV Viral Dynamics and Immune Suppression in Presence of Measurement Errors," Biometrics, The International Biometric Society, vol. 66(2), pages 327-335, June.
    3. Wei Liu & Lang Wu, 2007. "Simultaneous Inference for Semiparametric Nonlinear Mixed-Effects Models with Covariate Measurement Errors and Missing Responses," Biometrics, The International Biometric Society, vol. 63(2), pages 342-350, June.
    4. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    5. Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
    6. Wu, Lang, 2007. "A computationally efficient method for nonlinear mixed-effects models with nonignorable missing data in time-varying covariates," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2410-2419, February.
    7. Yangxin Huang & Getachew Dagne, 2011. "A Bayesian Approach to Joint Mixed-Effects Models with a Skew-Normal Distribution and Measurement Errors in Covariates," Biometrics, The International Biometric Society, vol. 67(1), pages 260-269, March.
    8. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    9. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    10. Wei Liu & Lang Wu, 2012. "Two-step and likelihood methods for HIV viral dynamic models with covariate measurement errors and missing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 963-978, October.
    11. Stephen Toit & Robert Cudeck, 2009. "Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable," Psychometrika, Springer;The Psychometric Society, vol. 74(1), pages 65-82, March.
    12. Jaroslaw Harezlak & Louise M. Ryan & Jay N. Giedd & Nicholas Lange, 2005. "Individual and Population Penalized Regression Splines for Accelerated Longitudinal Designs," Biometrics, The International Biometric Society, vol. 61(4), pages 1037-1048, December.
    13. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    14. Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.
    15. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    16. Wei Liu & Shuyou Li, 2015. "A multiple imputation approach to nonlinear mixed-effects models with covariate measurement errors and missing values," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 463-476, March.
    17. Huang Yangxin & Chen Ren & Dagne Getachew, 2011. "Simultaneous Bayesian Inference for Linear, Nonlinear and Semiparametric Mixed-Effects Models with Skew-Normality and Measurement Errors in Covariates," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-28, January.
    18. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2018. "Robust estimation in linear regression models for longitudinal data with covariate measurement errors and outliers," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 261-275.
    19. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    20. Chen, Xue-Dong & Tang, Nian-Sheng, 2010. "Bayesian analysis of semiparametric reproductive dispersion mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2145-2158, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:112-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.