IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4116-d963332.html
   My bibliography  Save this article

Applied Geospatial Bayesian Modeling in the Big Data Era: Challenges and Solutions

Author

Listed:
  • Jason S. Byers

    (Social Science Research Institute, Duke University, Durham, NC 27708, USA
    These authors contributed equally to this work.)

  • Jeff Gill

    (Department of Government, Department of Mathematics & Statistics, Center for Data Science, American University, Washington, DC 20016, USA
    These authors contributed equally to this work.)

Abstract

Two important trends in applied statistics are an increased usage of geospatial models and an increased usage of big data. Naturally, there has been overlap as analysts utilize the techniques associated with each. With geospatial methods such as kriging, the computation required becomes intensive quickly, even with datasets that would not be considered huge in other contexts. In this work we describe a solution to the computational problem of estimating Bayesian kriging models with big data, Bootstrap Random Spatial Sampling (BRSS), and first provide an analytical argument that BRSS produces consistent estimates from the Bayesian spatial model. Second, with a medium-sized dataset on fracking in West Virginia, we show that bootstrap sample effects from a full-information Bayesian model are reduced with more bootstrap samples and more observations per sample as in standard bootstrapping. Third, we offer a realistic illustration of the method by analyzing campaign donors in California with a large geocoded dataset. With this solution, scholars will not be constrained in their ability to apply theoretically relevant geospatial Bayesian models when the size of the data produces computational intractability.

Suggested Citation

  • Jason S. Byers & Jeff Gill, 2022. "Applied Geospatial Bayesian Modeling in the Big Data Era: Challenges and Solutions," Mathematics, MDPI, vol. 10(21), pages 1-23, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4116-:d:963332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hartman, Linda & Hossjer, Ola, 2008. "Fast kriging of large data sets with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2331-2349, January.
    2. Jun Shao, 1990. "Bootstrap estimation of the asymptotic variances of statistical functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(4), pages 737-752, December.
    3. Wendy K. Tam Cho & James G. Gimpel, 2007. "Prospecting for (Campaign) Gold," American Journal of Political Science, John Wiley & Sons, vol. 51(2), pages 255-268, April.
    4. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
    5. Monogan, James E. & Gill, Jeff, 2016. "Measuring State and District Ideology with Spatial Realignment," Political Science Research and Methods, Cambridge University Press, vol. 4(1), pages 97-121, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Makowski & Philip D. Waggoner, 2023. "Where Are We Going with Statistical Computing? From Mathematical Statistics to Collaborative Data Science," Mathematics, MDPI, vol. 11(8), pages 1-9, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montero, José-María & Fernández-Avilés, Gema, 2015. "Functional Kriging Prediction of Pollution Series: The Geostatistical Alternative for Spatially-fixed Data/Predicción de series de contaminación mediante kriging funcional. La alternativa geoestadísti," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 145-179, Enero.
    2. Furrer, Reinhard & Bachoc, François & Du, Juan, 2016. "Asymptotic properties of multivariate tapering for estimation and prediction," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 177-191.
    3. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    4. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    5. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    6. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Matthew Plumlee & Taylor G. Asher & Elaine Spiller & Richard A. Luettich & Brian Blanton & Tracy L. Kijewski-Correa & Andrew Kennedy & Lauren Schmie, 2021. "Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1349-1386, November.
    7. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    8. Jiménez Gamero, M. D. & Muñoz García, J. & Muñoz Reyes, A., 1998. "Bootstrapping statistical functionals," Statistics & Probability Letters, Elsevier, vol. 39(3), pages 229-236, August.
    9. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    10. Jonathan R. Bradley & Christopher K. Wikle & Scott H. Holan, 2017. "Regionalization of multiscale spatial processes by using a criterion for spatial aggregation error," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 815-832, June.
    11. Andrew Finley & Sudipto Banerjee & Alan Gelfand, 2012. "Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes," Journal of Geographical Systems, Springer, vol. 14(1), pages 29-47, January.
    12. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    13. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    14. Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
    15. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    16. Chandra, Hukum & Salvati, Nicola & Chambers, Ray & Tzavidis, Nikos, 2012. "Small area estimation under spatial nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2875-2888.
    17. Kenneth K. Lopiano & Linda J. Young & Carol A. Gotway, 2014. "A pseudo-penalized quasi-likelihood approach to the spatial misalignment problem with non-normal data," Biometrics, The International Biometric Society, vol. 70(3), pages 648-660, September.
    18. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    19. Hang Zhang & Yong Liu & Dongyang Yang & Guanpeng Dong, 2022. "PM 2.5 Concentrations Variability in North China Explored with a Multi-Scale Spatial Random Effect Model," IJERPH, MDPI, vol. 19(17), pages 1-14, August.
    20. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4116-:d:963332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.