IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2201.12286.html
   My bibliography  Save this paper

A Stock Trading System for a Medium Volatile Asset using Multi Layer Perceptron

Author

Listed:
  • Ivan Letteri
  • Giuseppe Della Penna
  • Giovanni De Gasperis
  • Abeer Dyoub

Abstract

Stock market forecasting is a lucrative field of interest with promising profits but not without its difficulties and for some people could be even causes of failure. Financial markets by their nature are complex, non-linear and chaotic, which implies that accurately predicting the prices of assets that are part of it becomes very complicated. In this paper we propose a stock trading system having as main core the feed-forward deep neural networks (DNN) to predict the price for the next 30 days of open market, of the shares issued by Abercrombie & Fitch Co. (ANF) in the stock market of the New York Stock Exchange (NYSE). The system we have elaborated calculates the most effective technical indicator, applying it to the predictions computed by the DNNs, for generating trades. The results showed an increase in values such as Expectancy Ratio of 2.112% of profitable trades with Sharpe, Sortino, and Calmar Ratios of 2.194, 3.340, and 12.403 respectively. As a verification, we adopted a backtracking simulation module in our system, which maps trades to actual test data consisting of the last 30 days of open market on the ANF asset. Overall, the results were promising bringing a total profit factor of 3.2% in just one month from a very modest budget of $100. This was possible because the system reduced the number of trades by choosing the most effective and efficient trades, saving on commissions and slippage costs.

Suggested Citation

  • Ivan Letteri & Giuseppe Della Penna & Giovanni De Gasperis & Abeer Dyoub, 2022. "A Stock Trading System for a Medium Volatile Asset using Multi Layer Perceptron," Papers 2201.12286, arXiv.org.
  • Handle: RePEc:arx:papers:2201.12286
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2201.12286
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giordano, Francesco & La Rocca, Michele & Perna, Cira, 2007. "Forecasting nonlinear time series with neural network sieve bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3871-3884, May.
    2. Huiwen Wang & Wenyang Huang & Shanshan Wang, 2021. "Forecasting open-high-low-close data contained in candlestick chart," Papers 2104.00581, arXiv.org.
    3. Kurozumi, Eiji, 2002. "The Limiting Properties Of The Canova And Hansen Test Under Local Alternatives," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1197-1220, October.
    4. Jingtao Yao & Chew Lim Tan & Hean-Lee Poh, 1999. "Neural Networks For Technical Analysis: A Study On Klci," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 221-241.
    5. Oleh Danyliv & Bruce Bland & Alexandre Argenson, 2019. "Random walk model from the point of view of algorithmic trading," Papers 1908.04333, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Letteri & Giuseppe Della Penna & Giovanni De Gasperis & Abeer Dyoub, 2022. "DNN-ForwardTesting: A New Trading Strategy Validation using Statistical Timeseries Analysis and Deep Neural Networks," Papers 2210.11532, arXiv.org.
    2. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.
    3. Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
    4. Jozef Baruník, 2008. "How Do Neural Networks Enhance the Predictability of Central European Stock Returns?," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 58(07-08), pages 358-376, Oktober.
    5. Jacinta Chan Phooi M'ng & Azmin Azliza Aziz, 2016. "Using Neural Networks to Enhance Technical Trading Rule Returns: A Case with KLCI," Athens Journal of Business & Economics, Athens Institute for Education and Research (ATINER), vol. 2(1), pages 63-70, January.
    6. Tsao, Hao-Han & Leu, Yih-Guang & Chou, Li-Fen, 2021. "A center-of-concentrated-based prediction interval for wind power forecasting," Energy, Elsevier, vol. 237(C).
    7. Álvarez-Díaz, Marcos & Hammoudeh, Shawkat & Gupta, Rangan, 2014. "Detecting predictable non-linear dynamics in Dow Jones Islamic Market and Dow Jones Industrial Average indices using nonparametric regressions," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 22-35.
    8. Mohammad Rafiqul Islam & Nguyet Nguyen, 2020. "Comparison of Financial Models for Stock Price Prediction," JRFM, MDPI, vol. 13(8), pages 1-19, August.
    9. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    10. Catalina Lucia COCIANU & Hakob GRIGORYAN, 2015. "An Artificial Neural Network for Data Forecasting Purposes," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 19(2), pages 34-45.
    11. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    12. Ozgur Ican & Taha Bugra Celik, 2017. "Stock Market Prediction Performance of Neural Networks: A Literature Review," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(11), pages 100-108, November.
    13. Manolis Maragoudakis & Dimitrios Serpanos, 2016. "Exploiting Financial News and Social Media Opinions for Stock Market Analysis using MCMC Bayesian Inference," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 589-622, April.
    14. Liébana-Cabanillas, Francisco & Marinković, Veljko & Kalinić, Zoran, 2017. "A SEM-neural network approach for predicting antecedents of m-commerce acceptance," International Journal of Information Management, Elsevier, vol. 37(2), pages 14-24.
    15. Marcos Álvarez-Díaz & Shawkat Hammoudeh & Rangan Gupta, 2013. "Detecting Predictable Non-linear Dynamics in Dow Jones Industrial Average and Dow Jones Islamic Market Indices using Nonparametric Regressions," Working Papers 201385, University of Pretoria, Department of Economics.
    16. Anton Skrobotov, 2013. "On GLS-detrending for deterministic seasonality testing," Working Papers 0073, Gaidar Institute for Economic Policy, revised 2014.
    17. Muhammad Nadim Hanif & Khurrum S. Mughal & Javed Iqbal, 2018. "A Thick ANN Model for Forecasting Inflation," SBP Working Paper Series 99, State Bank of Pakistan, Research Department.
    18. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    19. Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.
    20. Jacinta Chan Phooi M’ng & Mohammadali Mehralizadeh, 2016. "Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-29, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.12286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.