IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2007i10p5130-5141.html
   My bibliography  Save this article

Weighted empirical likelihood estimates and their robustness properties

Author

Listed:
  • Glenn, N.L.
  • Zhao, Yichuan

Abstract

No abstract is available for this item.

Suggested Citation

  • Glenn, N.L. & Zhao, Yichuan, 2007. "Weighted empirical likelihood estimates and their robustness properties," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5130-5141, June.
  • Handle: RePEc:eee:csdana:v:51:y:2007:i:10:p:5130-5141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00250-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    2. Suria Ellis & Faans Steyn & Hennie Venter, 2003. "Fitting a Pareto-Normal-Pareto distribution to the residuals of financial data," Computational Statistics, Springer, vol. 18(3), pages 477-491, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Guoyou & Bai, Yang & Zhu, Zhongyi, 2009. "Robust empirical likelihood inference for longitudinal data," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2101-2108, October.
    2. Yichuan Zhao & Ali Jinnah, 2012. "Inference for Cox’s regression models via adjusted empirical likelihood," Computational Statistics, Springer, vol. 27(1), pages 1-12, March.
    3. Yongli Sang & Xin Dang & Yichuan Zhao, 2020. "Depth-based weighted jackknife empirical likelihood for non-smooth U-structure equations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 573-598, June.
    4. Kun Chen & Rui Huang, 2021. "Robust empirical likelihood for time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 4-18, January.
    5. Zhao, Yichuan & Chen, Feiming, 2008. "Empirical likelihood inference for censored median regression model via nonparametric kernel estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 215-231, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grace Lee Ching Yap, 2020. "Optimal Filter Approximations for Latent Long Memory Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 547-568, August.
    2. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    3. Hongjian Shi & Mathias Drton & Marc Hallin & Fang Han, 2023. "Semiparametrically Efficient Tests of Multivariate Independence Using Center-Outward Quadrant, Spearman, and Kendall Statistics," Working Papers ECARES 2023-03, ULB -- Universite Libre de Bruxelles.
    4. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    5. Bakirov, Nail K. & Rizzo, Maria L. & Szekely, Gábor J., 2006. "A multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1742-1756, September.
    6. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    7. Marc Hallin & Hongjian Shi & Mathias Drton & Fang Han, 2021. "Center-Outward Sign- and Rank-Based Quadrant, Spearman, and Kendall Tests for Multivariate Independence," Working Papers ECARES 2021-27, ULB -- Universite Libre de Bruxelles.
    8. Davy Paindaveine & Thomas Verdebout, 2013. "Universal Asymptotics for High-Dimensional Sign Tests," Working Papers ECARES ECARES 2013-40, ULB -- Universite Libre de Bruxelles.
    9. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2019. "Sign Tests for Weak Principal Directions," Working Papers ECARES 2019-01, ULB -- Universite Libre de Bruxelles.
    10. Roy, Angshuman & Ghosh, Anil K., 2020. "Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors," Statistics & Probability Letters, Elsevier, vol. 164(C).
    11. Paindaveine, Davy, 2009. "On Multivariate Runs Tests for Randomness," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1525-1538.
    12. Zhang, Wei & Gao, Wei & Ng, Hon Keung Tony, 2023. "Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    13. Dürre, Alexander & Vogel, Daniel & Fried, Roland, 2015. "Spatial sign correlation," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 89-105.
    14. Dehghan, Sakineh & Faridrohani, Mohammad Reza, 2024. "A data depth based nonparametric test of independence between two random vectors," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    15. Hannu Oja & Davy Paindaveine & Sara Taskinen, 2009. "Parametric and nonparametric test for multivariate independence in IC models," Working Papers ECARES 2009_018, ULB -- Universite Libre de Bruxelles.
    16. Angshuman Roy & Anil K. Ghosh & Alok Goswami & C. A. Murthy, 2022. "Some New Copula Based Distribution-free Tests of Independence among Several Random Variables," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 556-596, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:10:p:5130-5141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.