IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i4p1749-1773.html
   My bibliography  Save this article

An accept-reject algorithm for the positive multivariate normal distribution

Author

Listed:
  • Carsten Botts

Abstract

The need to simulate from a positive multivariate normal distribution arises in several settings, specifically in Bayesian analysis. A variety of algorithms can be used to sample from this distribution, but most of these algorithms involve Gibbs sampling. Since the sample is generated from a Markov chain, the user has to account for the fact that sequential draws in the sample depend on one another and that the sample generated only follows a positive multivariate normal distribution asymptotically. The user would not have to account for such issues if the sample generated was i.i.d. In this paper, an accept-reject algorithm is introduced in which variates from a positive multivariate normal distribution are proposed from a multivariate skew-normal distribution. This new algorithm generates an i.i.d. sample and is shown, under certain conditions, to be very efficient. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Carsten Botts, 2013. "An accept-reject algorithm for the positive multivariate normal distribution," Computational Statistics, Springer, vol. 28(4), pages 1749-1773, August.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:4:p:1749-1773
    DOI: 10.1007/s00180-012-0377-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-012-0377-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-012-0377-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mira & J. Møller & G. O. Roberts, 2001. "Perfect slice samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 593-606.
    2. Michael Pitt & David Chan & Robert Kohn, 2006. "Efficient Bayesian inference for Gaussian copula regression models," Biometrika, Biometrika Trust, vol. 93(3), pages 537-554, September.
    3. Gupta, Arjun K. & González-Farías, Graciela & Domínguez-Molina, J. Armando, 2004. "A multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 181-190, April.
    4. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    5. Michalis Linardakis & Petros Dellaportas, 2003. "Assessment of Athens's metro passenger behaviour via a multiranked probit model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(2), pages 185-200, May.
    6. Liu, Xuefeng & Daniels, Michael J. & Marcus, Bess, 2009. "Joint Models for the Association of Longitudinal Binary and Continuous Processes With Application to a Smoking Cessation Trial," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 429-438.
    7. Chib, Siddhartha, 1992. "Bayes inference in the Tobit censored regression model," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 79-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    2. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    3. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Lee, Lung-fei, 1999. "Estimation of dynamic and ARCH Tobit models," Journal of Econometrics, Elsevier, vol. 92(2), pages 355-390, October.
    5. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    6. Steven Wei, 1999. "A bayesian approach to dynamic tobit models," Econometric Reviews, Taylor & Francis Journals, vol. 18(4), pages 417-439.
    7. Kim, Changjoo & Parent, Olivier, 2016. "Modeling individual travel behaviors based on intra-household interactions," Regional Science and Urban Economics, Elsevier, vol. 57(C), pages 1-11.
    8. Fasano, Augusto & Rebaudo, Giovanni & Durante, Daniele & Petrone, Sonia, 2021. "A closed-form filter for binary time series," MPRA Paper 122349, University Library of Munich, Germany.
    9. F. Louzada & P. H. Ferreira, 2016. "Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2956-2976, December.
    10. Michael King, 2012. "The Unbanked Four-Fifths: Informality and Barriers to Financial Services in Nigeria," The Institute for International Integration Studies Discussion Paper Series iiisdp411, IIIS.
    11. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    12. L-J Kao & C-C Lu & C-C Chiu, 2011. "The training institution efficiency of the semiconductor institute programme in Taiwan—application of spatiotemporal ICA with DEA approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2162-2172, December.
    13. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    14. Yannis M. Ioannides & Vassilis A. Hajivassiliou, 2007. "Unemployment and liquidity constraints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 479-510.
    15. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    16. Haaijer, Marinus E., 1996. "Predictions in conjoint choice experiments : the x-factor probit model," Research Report 96B22, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    17. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    18. Jaehwan Kim & Greg M. Allenby & Peter E. Rossi, 2002. "Modeling Consumer Demand for Variety," Marketing Science, INFORMS, vol. 21(3), pages 229-250, December.
    19. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    20. Park, Cheolsung & Kang, Changhui, 2008. "Does education induce healthy lifestyle?," Journal of Health Economics, Elsevier, vol. 27(6), pages 1516-1531, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:4:p:1749-1773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.