IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v48y2005i2p307-316.html
   My bibliography  Save this article

Multivariate least-trimmed squares regression estimator

Author

Listed:
  • Jung, Kang-Mo

Abstract

No abstract is available for this item.

Suggested Citation

  • Jung, Kang-Mo, 2005. "Multivariate least-trimmed squares regression estimator," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 307-316, February.
  • Handle: RePEc:eee:csdana:v:48:y:2005:i:2:p:307-316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(04)00023-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hawkins, Douglas M., 1994. "The feasible solution algorithm for least trimmed squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 185-196, February.
    2. Esa Ollila & Hannu Oja & Thomas P. Hettmansperger, 2002. "Estimates of regression coefficients based on the sign covariance matrix," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 447-466, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serneels, Sven & Verdonck, Tim, 2009. "Principal component regression for data containing outliers and missing elements," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3855-3863, September.
    2. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    3. Cízek, Pavel, 2011. "Semiparametrically weighted robust estimation of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 774-788, January.
    4. Lanius, Vivian & Gather, Ursula, 2010. "Robust online signal extraction from multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 966-975, April.
    5. Lanius, Vivian & Gather, Ursula, 2007. "Robust online signal extraction from multivariate time series," Technical Reports 2007,38, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Agulló, Jose & Croux, Christophe & Van Aelst, Stefan, 2008. "The multivariate least-trimmed squares estimator," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 311-338, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roelant, E. & Van Aelst, S. & Croux, C., 2009. "Multivariate generalized S-estimators," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 876-887, May.
    2. Biau, Gérard & Devroye, Luc & Dujmović, Vida & Krzyżak, Adam, 2012. "An affine invariant k-nearest neighbor regression estimate," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 24-34.
    3. Ella Roelant & Stefan Van Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    4. G. Zioutas & L. Pitsoulis & A. Avramidis, 2009. "Quadratic mixed integer programming and support vectors for deleting outliers in robust regression," Annals of Operations Research, Springer, vol. 166(1), pages 339-353, February.
    5. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
    6. Nadar, M. & Hettmansperger, T. P. & Oja, H., 2003. "The asymptotic covariance matrix of the Oja median," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 431-442, October.
    7. Ollila, Esa & Oja, Hannu & Croux, Christophe, 2003. "The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 328-355, November.
    8. Sven Jäger & Anita Schöbel, 2020. "The blockwise coordinate descent method for integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 357-381, April.
    9. Mount, David M. & Netanyahu, Nathan S. & Piatko, Christine D. & Wu, Angela Y. & Silverman, Ruth, 2016. "A practical approximation algorithm for the LTS estimator," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 148-170.
    10. Agulló, Jose & Croux, Christophe & Van Aelst, Stefan, 2008. "The multivariate least-trimmed squares estimator," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 311-338, March.
    11. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    12. Hawkins, Douglas M., 1995. "Convergence of the feasible solution algorithm for least median of squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 19(5), pages 519-538, May.
    13. Atkinson, A. C. & Cheng, Tsung-Chi, 2000. "On robust linear regression with incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 33(4), pages 361-380, June.
    14. Huo, Lijuan & Kim, Tae-Hwan & Kim, Yunmi, 2012. "Robust estimation of covariance and its application to portfolio optimization," Finance Research Letters, Elsevier, vol. 9(3), pages 121-134.
    15. Agullo, Jose, 2001. "New algorithms for computing the least trimmed squares regression estimator," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 425-439, June.
    16. Ella Roelant & Stefan Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    17. Klouda, Karel, 2015. "An exact polynomial time algorithm for computing the least trimmed squares estimate," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 27-40.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:48:y:2005:i:2:p:307-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.