On robust linear regression with incomplete data
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hawkins, Douglas M., 1994. "The feasible solution algorithm for least trimmed squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 185-196, February.
- Liu, C., 1995. "Missing Data Imputation Using the Multivariate t Distribution," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 139-158, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M.J. Daniels & C. Wang & B.H. Marcus, 2014. "Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates," Biometrics, The International Biometric Society, vol. 70(1), pages 62-72, March.
- Gerda Claeskens & Fabrizio Consentino, 2008. "Variable Selection with Incomplete Covariate Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1062-1069, December.
- Fernández, C. & Steel, M.F.J., 1997. "Multivariate Student -t Regression Models : Pitfalls and Inference," Discussion Paper 1997-08, Tilburg University, Center for Economic Research.
- G. Zioutas & L. Pitsoulis & A. Avramidis, 2009. "Quadratic mixed integer programming and support vectors for deleting outliers in robust regression," Annals of Operations Research, Springer, vol. 166(1), pages 339-353, February.
- Margarita Marín & Edilberto Cepeda-Cuervo, 2022. "A Bayesian Regression Model for the Non-standardized t Distribution with Location, Scale and Degrees of Freedom Parameters," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 809-830, November.
- Sik-Yum Lee & Ye-Mao Xia, 2008. "A Robust Bayesian Approach for Structural Equation Models with Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 343-364, September.
- Sven Jäger & Anita Schöbel, 2020. "The blockwise coordinate descent method for integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 357-381, April.
- Mount, David M. & Netanyahu, Nathan S. & Piatko, Christine D. & Wu, Angela Y. & Silverman, Ruth, 2016. "A practical approximation algorithm for the LTS estimator," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 148-170.
- Fernández, C. & Steel, M.F.J., 1997. "Multivariate Student -t Regression Models : Pitfalls and Inference," Other publications TiSEM 3fff240d-a587-4537-ba5f-2, Tilburg University, School of Economics and Management.
- Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
- Hawkins, Douglas M., 1995. "Convergence of the feasible solution algorithm for least median of squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 19(5), pages 519-538, May.
- Margaret Y Hwang & David Weil, 1997. "The Diffusion of Modern Manufacturing Practices: Evidence from Retail-Apparel Sectors," Working Papers 97-11, Center for Economic Studies, U.S. Census Bureau.
- Jung, Kang-Mo, 2005. "Multivariate least-trimmed squares regression estimator," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 307-316, February.
- Agullo, Jose, 2001. "New algorithms for computing the least trimmed squares regression estimator," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 425-439, June.
- Klouda, Karel, 2015. "An exact polynomial time algorithm for computing the least trimmed squares estimate," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 27-40.
- Tang, Yongqiang, 2015. "An efficient monotone data augmentation algorithm for Bayesian analysis of incomplete longitudinal data," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 146-152.
- Jie Jiang & Xinsheng Liu & Keming Yu, 2013. "Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution," Computational Statistics, Springer, vol. 28(4), pages 1485-1500, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:33:y:2000:i:4:p:361-380. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.