IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v15y2007i3d10.1007_s10260-006-0030-8.html
   My bibliography  Save this article

An L1-type estimator of multivariate location and shape

Author

Listed:
  • Ella Roelant

    (Ghent University - UGent)

  • Stefan Van Aelst

    (Ghent University - UGent)

Abstract

In this note we study a multivariate extension of the median obtained by considering the median as the L1 location estimator. Contrary to other multivariate extensions, this multivariate estimator yields simultaneously a location estimate and shape/scatter estimate. We investigate properties of the estimator such as the influence function and asymptotic variances and compare it with other estimators of location and shape.

Suggested Citation

  • Ella Roelant & Stefan Van Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
  • Handle: RePEc:spr:stmapp:v:15:y:2007:i:3:d:10.1007_s10260-006-0030-8
    DOI: 10.1007/s10260-006-0030-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-006-0030-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-006-0030-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
    2. Oja, Hannu, 1983. "Descriptive statistics for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 327-332, October.
    3. Esa Ollila & Hannu Oja & Thomas P. Hettmansperger, 2002. "Estimates of regression coefficients based on the sign covariance matrix," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 447-466, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
    2. Hlubinka, Daniel & Šiman, Miroslav, 2013. "On elliptical quantiles in the quantile regression setup," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 163-171.
    3. Daniel Hlubinka & Miroslav Šiman, 2015. "On generalized elliptical quantiles in the nonlinear quantile regression setup," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 249-264, June.
    4. Olcay Arslan, 2010. "An alternative multivariate skew Laplace distribution: properties and estimation," Statistical Papers, Springer, vol. 51(4), pages 865-887, December.
    5. Xin Dang & Hailin Sang & Lauren Weatherall, 2019. "Gini covariance matrix and its affine equivariant version," Statistical Papers, Springer, vol. 60(3), pages 641-666, June.
    6. Shi, Jianhong & Bai, Xiuqin & Song, Weixing, 2022. "Tweedie-type formulae for a multivariate Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ella Roelant & Stefan Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    2. G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
    3. Nadar, M. & Hettmansperger, T. P. & Oja, H., 2003. "The asymptotic covariance matrix of the Oja median," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 431-442, October.
    4. Ollila, Esa & Oja, Hannu & Croux, Christophe, 2003. "The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 328-355, November.
    5. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    6. Biau, Gérard & Devroye, Luc & Dujmović, Vida & Krzyżak, Adam, 2012. "An affine invariant k-nearest neighbor regression estimate," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 24-34.
    7. Jin Wang & Weihua Zhou, 2015. "Effect of kurtosis on efficiency of some multivariate medians," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 331-348, September.
    8. Hwang, Jinsoo & Jorn, Hongsuk & Kim, Jeankyung, 2004. "On the performance of bivariate robust location estimators under contamination," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 587-601, January.
    9. Masato Okamoto, 2009. "Decomposition of gini and multivariate gini indices," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 7(2), pages 153-177, June.
    10. Averous, Jean & Meste, Michel, 1997. "Median Balls: An Extension of the Interquantile Intervals to Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 222-241, November.
    11. Eisenberg, Bennett, 2015. "The multivariate Gini ratio," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 292-298.
    12. Roelant, E. & Van Aelst, S. & Croux, C., 2009. "Multivariate generalized S-estimators," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 876-887, May.
    13. Kwiecien, Robert & Gather, Ursula, 2007. "Jensen's inequality for the Tukey median," Technical Reports 2007,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    15. repec:spo:wpmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    16. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    17. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    18. Belzunce, Félix & Ruiz, José M. & Suárez-Llorens, Alfonso, 2008. "On multivariate dispersion orderings based on the standard construction," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 271-281, February.
    19. C. Croux & C. Dehon & A. Yadine, 2010. "The k-step spatial sign covariance matrix," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 137-150, September.
    20. Shen, Gang, 2009. "Asymptotics of a Theil-type estimate in multiple linear regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1053-1064, April.
    21. Nadja Klein & Thomas Kneib, 2020. "Directional bivariate quantiles: a robust approach based on the cumulative distribution function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 225-260, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:15:y:2007:i:3:d:10.1007_s10260-006-0030-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.