IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v6y2019ics2214716018301404.html
   My bibliography  Save this article

Unique closed-form solutions of portfolio selection subject to mean-skewness-normalization constraints

Author

Listed:
  • Lu, Xin
  • Liu, Qiong
  • Xue, Fengxin

Abstract

This paper originally proposes two unique closed-form solutions, respectively to risky assets only and a risk-free asset existing situations, of the mean-variance-skewness (MVS) optimization model subject to mean-sknewness-normalization constraints for portfolio selection. The efficient frontier and capital allocation surface (CAS) respectively derived from the two solutions are two hyperboloids, and tangent to each other at one hyperbola referred to as the market portfolio curve. Moreover, this curve intersects the mean-skewness plane of the portfolio return wtih zero-variance (zero-risk) at a line. Calculating the distance between a point on the coincident curve with the vertex of the CAS, we present a novel ratio to measure the performance of the risk-adjusted returns of market portfolio. The ratio is similar to the Sharpe ratio, moreover, under the more realistic assumption that portfolio returns follow a skew-normal distribution, the novel ratio can quantify the degree (or absence) of market portfolio exuberance.

Suggested Citation

  • Lu, Xin & Liu, Qiong & Xue, Fengxin, 2019. "Unique closed-form solutions of portfolio selection subject to mean-skewness-normalization constraints," Operations Research Perspectives, Elsevier, vol. 6(C).
  • Handle: RePEc:eee:oprepe:v:6:y:2019:i:c:s2214716018301404
    DOI: 10.1016/j.orp.2018.100094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716018301404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2018.100094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Back, Kerry, 2010. "Asset Pricing and Portfolio Choice Theory," OUP Catalogue, Oxford University Press, number 9780195380613.
    2. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    3. Bertrand Maillet & Emmanuel Jurczenko, 2002. "The 3-CAPM: Theoretical Foundations and a Comparison of Asset Pricing Models in an Unified Framework," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308997, HAL.
    4. Prakash, Arun J. & Chang, Chun-Hao & Pactwa, Therese E., 2003. "Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets," Journal of Banking & Finance, Elsevier, vol. 27(7), pages 1375-1390, July.
    5. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Introduction to Multi-moment Asset Allocation and Pricing Models," Post-Print hal-00308991, HAL.
    6. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Multi-moment Asset Allocation and Pricing Models," Post-Print hal-00308990, HAL.
    7. Genton, Marc G. & He, Li & Liu, Xiangwei, 2001. "Moments of skew-normal random vectors and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 319-325, February.
    8. de Athayde, Gustavo M. & Flores, Renato Jr., 2004. "Finding a maximum skewness portfolio--a general solution to three-moments portfolio choice," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1335-1352, April.
    9. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    10. Chunhachinda, Pornchai & Dandapani, Krishnan & Hamid, Shahid & Prakash, Arun J., 1997. "Portfolio selection and skewness: Evidence from international stock markets," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 143-167, February.
    11. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    12. Flavio Pressacco & Patrizia Stucchi, 2000. "Linearity properties of a three-moments portfolio model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 23(2), pages 133-150.
    13. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Multi-moment Asset Allocation and Pricing Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308990, HAL.
    14. Li, Xiang & Qin, Zhongfeng & Kar, Samarjit, 2010. "Mean-variance-skewness model for portfolio selection with fuzzy returns," European Journal of Operational Research, Elsevier, vol. 202(1), pages 239-247, April.
    15. Peiro, Amado, 1999. "Skewness in financial returns," Journal of Banking & Finance, Elsevier, vol. 23(6), pages 847-862, June.
    16. Bertrand Maillet & Emmanuel Jurczenko, 2002. "The 3-CAPM: Theoretical Foundations and a Comparison of Asset Pricing Models in an Unified Framework," Post-Print hal-00308997, HAL.
    17. Gan, Quan, 2014. "Location-scale portfolio selection with factor-recentered skew normal asset returns," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 176-187.
    18. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Introduction to Multi-moment Asset Allocation and Pricing Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308991, HAL.
    19. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    20. Jiang, Chonghui & Ma, Yongkai & An, Yunbi, 2016. "Portfolio selection with a systematic skewness constraint," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 393-405.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2011. "Portfolio Selection with Skewness: A Comparison and a Generalized Two Fund Separation Result," Working Papers 2011/09, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    2. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2013. "Portfolio selection with skewness: A comparison of methods and a generalized one fund result," European Journal of Operational Research, Elsevier, vol. 230(2), pages 412-421.
    3. K. Saranya & P. Prasanna, 2014. "Portfolio Selection and Optimization with Higher Moments: Evidence from the Indian Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 133-149, May.
    4. Kerstens, Kristiaan & Mounir, Amine & Van de Woestyne, Ignace, 2011. "Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function," European Journal of Operational Research, Elsevier, vol. 210(1), pages 81-94, April.
    5. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
    6. Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
    7. Lakshina, Valeriya, 2020. "Do portfolio investors need to consider the asymmetry of returns on the Russian stock market?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    8. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
    9. Nalpas, Nicolas & Simar, Leopold & Vanhems, Anne, 2016. "Portfolio Selection in a Multi-Input Multi-Output Setting:a Simple Monte-Carlo-FDH Algorithm," LIDAM Discussion Papers ISBA 2016022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Wei-Han Liu, 2014. "Optimal hedge ratio estimation and hedge effectiveness with multivariate skew distributions," Applied Economics, Taylor & Francis Journals, vol. 46(12), pages 1420-1435, April.
    11. Rodríguez, Yeny E. & Gómez, Juan M. & Contreras, Javier, 2021. "Diversified behavioral portfolio as an alternative to Modern Portfolio Theory," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    12. Briec, Walter & Kerstens, Kristiaan, 2010. "Portfolio selection in multidimensional general and partial moment space," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 636-656, April.
    13. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.
    14. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    15. Khaki, Audil & Prasad, Mason & Al-Mohamad, Somar & Bakry, Walid & Vo, Xuan Vinh, 2023. "Re-evaluating portfolio diversification and design using cryptocurrencies: Are decentralized cryptocurrencies enough?," Research in International Business and Finance, Elsevier, vol. 64(C).
    16. Ayub, Usman & Shah, Syed Zulfiqar Ali & Abbas, Qaisar, 2015. "Robust analysis for downside risk in portfolio management for a volatile stock market," Economic Modelling, Elsevier, vol. 44(C), pages 86-96.
    17. Gan, Quan, 2014. "Location-scale portfolio selection with factor-recentered skew normal asset returns," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 176-187.
    18. Ryo Kinoshita, 2015. "Asset allocation under higher moments with the GARCH filter," Empirical Economics, Springer, vol. 49(1), pages 235-254, August.
    19. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    20. Mukasa Adamon N., 2016. "Working Paper 233 - Technology Adoption and Risk Exposure among Smallholder Farmers: Panel Data Evidence from Tanzania and Uganda," Working Paper Series 2328, African Development Bank.

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:6:y:2019:i:c:s2214716018301404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.