IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v197y2024ics0167947324000604.html
   My bibliography  Save this article

Empirical Bayes Poisson matrix completion

Author

Listed:
  • Li, Xiao
  • Matsuda, Takeru
  • Komaki, Fumiyasu

Abstract

An empirical Bayes method for the Poisson matrix denoising and completion problems is proposed, and a corresponding algorithm called EBPM (Empirical Bayes Poisson Matrix) is developed. This approach is motivated by the non-central singular value shrinkage prior, which was used for the estimation of the mean matrix parameter of a matrix-variate normal distribution. Numerical experiments show that the EBPM algorithm outperforms the common nuclear norm penalized method in both matrix denoising and completion. The EBPM algorithm is highly efficient and does not require heuristic parameter tuning, as opposed to the nuclear norm penalized method, in which the regularization parameter should be selected. The EBPM algorithm also performs better than others in real-data applications.

Suggested Citation

  • Li, Xiao & Matsuda, Takeru & Komaki, Fumiyasu, 2024. "Empirical Bayes Poisson matrix completion," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000604
    DOI: 10.1016/j.csda.2024.107976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000604
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takeru Matsuda & Fumiyasu Komaki, 2015. "Singular value shrinkage priors for Bayesian prediction," Biometrika, Biometrika Trust, vol. 102(4), pages 843-854.
    2. Matsuda, Takeru & Komaki, Fumiyasu, 2019. "Empirical Bayes matrix completion," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 195-210.
    3. Jianqing Fan & Han Liu & Yang Ning & Hui Zou, 2017. "High dimensional semiparametric latent graphical model for mixed data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 405-421, March.
    4. Robin, Geneviève & Josse, Julie & Moulines, Éric & Sardy, Sylvain, 2019. "Low-rank model with covariates for count data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 416-434.
    5. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    6. Bigot, Jérémie & Deledalle, Charles, 2022. "Low-rank matrix denoising for count data using unbiased Kullback-Leibler risk estimation," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T Matsuda & W E Strawderman, 2022. "Estimation under matrix quadratic loss and matrix superharmonicity [Shrinkage estimation with a matrix loss function]," Biometrika, Biometrika Trust, vol. 109(2), pages 503-519.
    2. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Bhuwan Khatri & Kandice L. Tessneer & Astrid Rasmussen & Farhang Aghakhanian & Tove Ragna Reksten & Adam Adler & Ilias Alevizos & Juan-Manuel Anaya & Lara A. Aqrawi & Eva Baecklund & Johan G. Brun & S, 2022. "Genome-wide association study identifies Sjögren’s risk loci with functional implications in immune and glandular cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Liyuan Zhou & Qiongzi Qiu & Qing Zhou & Jianwei Li & Mengqian Yu & Kezhen Li & Lingling Xu & Xiaohui Ke & Haiming Xu & Bingjian Lu & Hui Wang & Weiguo Lu & Pengyuan Liu & Yan Lu, 2022. "Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Hossein Salari & Geneviève Fourel & Daniel Jost, 2024. "Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.
    8. Andrea Wilderman & Eva D’haene & Machteld Baetens & Tara N. Yankee & Emma Wentworth Winchester & Nicole Glidden & Ellen Roets & Jo Dorpe & Sandra Janssens & Danny E. Miller & Miranda Galey & Kari M. B, 2024. "A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    9. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    10. Brault, Vincent & Ouadah, Sarah & Sansonnet, Laure & Lévy-Leduc, Céline, 2018. "Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 143-165.
    11. Seungsoo Hahn & Dongsup Kim, 2015. "Identifying and Reducing Systematic Errors in Chromosome Conformation Capture Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    12. Julia Minderjahn & Alexander Fischer & Konstantin Maier & Karina Mendes & Margit Nuetzel & Johanna Raithel & Hanna Stanewsky & Ute Ackermann & Robert Månsson & Claudia Gebhard & Michael Rehli, 2022. "Postmitotic differentiation of human monocytes requires cohesin-structured chromatin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Malay Ghosh & Tatsuya Kubokawa & Gauri Sankar Datta, 2020. "Density Prediction and the Stein Phenomenon," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 330-352, August.
    14. Pau Farré & Eldon Emberly, 2018. "A maximum-entropy model for predicting chromatin contacts," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-16, February.
    15. Alexander Martinez-Fundichely & Austin Dixon & Ekta Khurana, 2022. "Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Wu Zuo & Guangming Chen & Zhimei Gao & Shuai Li & Yanyan Chen & Chenhui Huang & Juan Chen & Zhengjun Chen & Ming Lei & Qian Bian, 2021. "Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    17. P. Chatelain & X. Milhaud, 2024. "Estimation and prediction with data quality indexes in linear regressions," Computational Statistics, Springer, vol. 39(6), pages 3373-3404, September.
    18. Victor Lopez Soriano & Alfredo Dueñas Rey & Rajarshi Mukherjee & Frauke Coppieters & Miriam Bauwens & Andy Willaert & Elfride De Baere, 2024. "Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Sandhya Chandrasekaran & Sergio Espeso-Gil & Yong-Hwee Eddie Loh & Behnam Javidfar & Bibi Kassim & Yueyan Zhu & Yuan Zhang & Yuhao Dong & Lucy K. Bicks & Haixin Li & Prashanth Rajarajan & Cyril J. Pet, 2021. "Neuron-specific chromosomal megadomain organization is adaptive to recent retrotransposon expansions," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    20. Meng Zhang & Mary Elisabeth Ehmann & Srija Matukumalli & Aashutosh Girish Boob & David M. Gilbert & Huimin Zhao, 2023. "SHIELD: a platform for high-throughput screening of barrier-type DNA elements in human cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.