IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v197y2024ics0167947324000604.html
   My bibliography  Save this article

Empirical Bayes Poisson matrix completion

Author

Listed:
  • Li, Xiao
  • Matsuda, Takeru
  • Komaki, Fumiyasu

Abstract

An empirical Bayes method for the Poisson matrix denoising and completion problems is proposed, and a corresponding algorithm called EBPM (Empirical Bayes Poisson Matrix) is developed. This approach is motivated by the non-central singular value shrinkage prior, which was used for the estimation of the mean matrix parameter of a matrix-variate normal distribution. Numerical experiments show that the EBPM algorithm outperforms the common nuclear norm penalized method in both matrix denoising and completion. The EBPM algorithm is highly efficient and does not require heuristic parameter tuning, as opposed to the nuclear norm penalized method, in which the regularization parameter should be selected. The EBPM algorithm also performs better than others in real-data applications.

Suggested Citation

  • Li, Xiao & Matsuda, Takeru & Komaki, Fumiyasu, 2024. "Empirical Bayes Poisson matrix completion," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000604
    DOI: 10.1016/j.csda.2024.107976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000604
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.