IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005647.html
   My bibliography  Save this article

MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions

Author

Listed:
  • Koon-Kiu Yan
  • Shaoke Lou
  • Mark Gerstein

Abstract

Genome-wide proximity ligation based assays such as Hi-C have revealed that eukaryotic genomes are organized into structural units called topologically associating domains (TADs). From a visual examination of the chromosomal contact map, however, it is clear that the organization of the domains is not simple or obvious. Instead, TADs exhibit various length scales and, in many cases, a nested arrangement. Here, by exploiting the resemblance between TADs in a chromosomal contact map and densely connected modules in a network, we formulate TAD identification as a network optimization problem and propose an algorithm, MrTADFinder, to identify TADs from intra-chromosomal contact maps. MrTADFinder is based on the network-science concept of modularity. A key component of it is deriving an appropriate background model for contacts in a random chain, by numerically solving a set of matrix equations. The background model preserves the observed coverage of each genomic bin as well as the distance dependence of the contact frequency for any pair of bins exhibited by the empirical map. Also, by introducing a tunable resolution parameter, MrTADFinder provides a self-consistent approach for identifying TADs at different length scales, hence the acronym "Mr" standing for Multiple Resolutions. We then apply MrTADFinder to various Hi-C datasets. The identified domain boundaries are marked by characteristic signatures in chromatin marks and transcription factors (TF) that are consistent with earlier work. Moreover, by calling TADs at different length scales, we observe that boundary signatures change with resolution, with different chromatin features having different characteristic length scales. Furthermore, we report an enrichment of HOT (high-occupancy target) regions near TAD boundaries and investigate the role of different TFs in determining boundaries at various resolutions. To further explore the interplay between TADs and epigenetic marks, as tumor mutational burden is known to be coupled to chromatin structure, we examine how somatic mutations are distributed across boundaries and find a clear stepwise pattern. Overall, MrTADFinder provides a novel computational framework to explore the multi-scale structures in Hi-C contact maps.Author summary: The accommodation of the roughly 2m of DNA in the nuclei of mammalian cells results in an intricate structure, in which the topologically associating domains (TADs) formed by densely interacting genomic regions emerge as a fundamental structural unit. Identification of TADs is essential for understanding the role of 3D genome organization in gene regulation. By viewing the chromosomal contact map as a network, TADs correspond to the densely connected regions in the network. Motivated by this mapping, we propose a novel method, MrTADFinder, to identify TADs based on the concept of modularity in network science. Using MrTADFinder, we identify domains at various resolutions, and further explore the interplay between domains and other chromatin features like transcription factors binding and histone modifications at different resolutions. Overall, MrTADFinder provides a new computational framework to investigate the multiple length scales that are built inside the organization of the genome.

Suggested Citation

  • Koon-Kiu Yan & Shaoke Lou & Mark Gerstein, 2017. "MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
  • Handle: RePEc:plo:pcbi00:1005647
    DOI: 10.1371/journal.pcbi.1005647
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005647
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005647&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Dai & Wenyuan Li & Harianto Tjong & Shengli Hao & Yonggang Zhou & Qingjiao Li & Lin Chen & Bing Zhu & Frank Alber & Xianghong Jasmine Zhou, 2016. "Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    2. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    3. Benjamin D. Pope & Tyrone Ryba & Vishnu Dileep & Feng Yue & Weisheng Wu & Olgert Denas & Daniel L. Vera & Yanli Wang & R. Scott Hansen & Theresa K. Canfield & Robert E. Thurman & Yong Cheng & Günhan G, 2014. "Topologically associating domains are stable units of replication-timing regulation," Nature, Nature, vol. 515(7527), pages 402-405, November.
    4. Paz Polak & Rosa Karlić & Amnon Koren & Robert Thurman & Richard Sandstrom & Michael S. Lawrence & Alex Reynolds & Eric Rynes & Kristian Vlahoviček & John A. Stamatoyannopoulos & Shamil R. Sunyaev, 2015. "Cell-of-origin chromatin organization shapes the mutational landscape of cancer," Nature, Nature, vol. 518(7539), pages 360-364, February.
    5. Emily Crane & Qian Bian & Rachel Patton McCord & Bryan R. Lajoie & Bayly S. Wheeler & Edward J. Ralston & Satoru Uzawa & Job Dekker & Barbara J. Meyer, 2015. "Condensin-driven remodelling of X chromosome topology during dosage compensation," Nature, Nature, vol. 523(7559), pages 240-244, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thais Ealo & Victor Sanchez-Gaya & Patricia Respuela & María Muñoz-San Martín & Elva Martin-Batista & Endika Haro & Alvaro Rada-Iglesias, 2024. "Cooperative insulation of regulatory domains by CTCF-dependent physical insulation and promoter competition," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Michelle Dietzen & Haoran Zhai & Olivia Lucas & Oriol Pich & Christopher Barrington & Wei-Ting Lu & Sophia Ward & Yanping Guo & Robert E. Hynds & Simone Zaccaria & Charles Swanton & Nicholas McGranaha, 2024. "Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    4. Chong Wang & Xiang Liu & Jun Liang & Yohei Narita & Weiyue Ding & Difei Li & Luyao Zhang & Hongbo Wang & Merrin Man Long Leong & Isabella Hou & Catherine Gerdt & Chang Jiang & Qian Zhong & Zhonghui Ta, 2023. "A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.
    6. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    7. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Khalid H. Bhat & Saurabh Priyadarshi & Sarah Naiyer & Xinyan Qu & Hammad Farooq & Eden Kleiman & Jeffery Xu & Xue Lei & Jose F. Cantillo & Robert Wuerffel & Nicole Baumgarth & Jie Liang & Ann J. Feene, 2023. "An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Alexander Martinez-Fundichely & Austin Dixon & Ekta Khurana, 2022. "Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Wu Zuo & Guangming Chen & Zhimei Gao & Shuai Li & Yanyan Chen & Chenhui Huang & Juan Chen & Zhengjun Chen & Ming Lei & Qian Bian, 2021. "Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    11. Botong Zhou & Ping Hu & Guichun Liu & Zhou Chang & Zhiwei Dong & Zihe Li & Yuan Yin & Zunzhe Tian & Ge Han & Wen Wang & Xueyan Li, 2024. "Evolutionary patterns and functional effects of 3D chromatin structures in butterflies with extensive genome rearrangements," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Mingsen Li & Huaxing Huang & Bofeng Wang & Shaoshuai Jiang & Huizhen Guo & Liqiong Zhu & Siqi Wu & Jiafeng Liu & Li Wang & Xihong Lan & Wang Zhang & Jin Zhu & Fuxi Li & Jieying Tan & Zhen Mao & Chunqi, 2022. "Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Bob Zimmermann & Juan D. Montenegro & Sofia M. C. Robb & Whitney J. Fropf & Lukas Weilguny & Shuonan He & Shiyuan Chen & Jessica Lovegrove-Walsh & Eric M. Hill & Cheng-Yi Chen & Katerina Ragkousi & Da, 2023. "Topological structures and syntenic conservation in sea anemone genomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Yuan Yin & Huizhong Fan & Botong Zhou & Yibo Hu & Guangyi Fan & Jinhuan Wang & Fan Zhou & Wenhui Nie & Chenzhou Zhang & Lin Liu & Zhenyu Zhong & Wenbo Zhu & Guichun Liu & Zeshan Lin & Chang Liu & Jion, 2021. "Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    15. Zhen Wah Tan & Enrico Guarnera & Igor N Berezovsky, 2018. "Exploring chromatin hierarchical organization via Markov State Modelling," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-35, December.
    16. Lina Zheng & Wei Wang, 2022. "Regulation associated modules reflect 3D genome modularity associated with chromatin activity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Jacques Serizay & Cyril Matthey-Doret & Amaury Bignaud & Lyam Baudry & Romain Koszul, 2024. "Orchestrating chromosome conformation capture analysis with Bioconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Yanlin Zhang & Mathieu Blanchette, 2022. "Reference panel guided topological structure annotation of Hi-C data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Olivier Messina & Flavien Raynal & Julian Gurgo & Jean-Bernard Fiche & Vera Pancaldi & Marcelo Nollmann, 2023. "3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.