IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v26y2014i3p489-507.html
   My bibliography  Save this article

A plug-in the number of knots selector for polynomial spline regression

Author

Listed:
  • Shujie Ma

Abstract

A plug-in the number of interior knots (NIKs) selector is proposed for polynomial spline estimation in nonparametric regression. The existence and properties of the optimal NIKs for spline regression are established by minimising the weighted mean integrated squared error. We obtain plug-in formulae for the optimal NIKs based on the theoretical results of asymptotic optimality, and develop strategies for choosing the NIKs of the spline estimator. The proposed NIKs selection method is tested on our simulated data with quite satisfactory performance, and is illustrated by analysing a fossil data set.

Suggested Citation

  • Shujie Ma, 2014. "A plug-in the number of knots selector for polynomial spline regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 489-507, September.
  • Handle: RePEc:taf:gnstxx:v:26:y:2014:i:3:p:489-507
    DOI: 10.1080/10485252.2014.930143
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2014.930143
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2014.930143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Cai & Lisha Li & Simin Huang & Liang Ma & Lijian Yang, 2020. "Oracally efficient estimation for dense functional data with holiday effects," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 282-306, March.
    2. Kristy P. Robledo & Ian C. Marschner, 2021. "A new algorithm for fitting semi-parametric variance regression models," Computational Statistics, Springer, vol. 36(4), pages 2313-2335, December.
    3. Zhong, Chen, 2024. "Oracle-efficient estimation and trend inference in non-stationary time series with trend and heteroscedastic ARMA error," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    4. Wang, Jiangyan & Gu, Lijie & Yang, Lijian, 2022. "Oracle-efficient estimation for functional data error distribution with simultaneous confidence band," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    5. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:26:y:2014:i:3:p:489-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.