IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v193y2024ics016794732400001x.html
   My bibliography  Save this article

Oracle-efficient estimation and trend inference in non-stationary time series with trend and heteroscedastic ARMA error

Author

Listed:
  • Zhong, Chen

Abstract

The non-stationary time series often contain an unknown trend and unobserved error terms. The error terms in the proposed model consist of a smooth variance function and the latent stationary ARMA series, which allows heteroscedasticity at different time points. The theoretically justified two-step B-spline estimation method is proposed for the trend and variance function in the model, and then residuals are obtained by removing the trend and variance function estimators from the data. The maximum likelihood estimator (MLE) for the latent ARMA error coefficients based on the residuals is shown to be oracally efficient in the sense that it has the same asymptotic distribution as the infeasible MLE if the trend and variance function were known. In addition to the oracle efficiency, a kernel estimator is obtained for the trend function and shown to converge to the Gumbel distribution. It yields an asymptotically correct simultaneous confidence band (SCB) for the trend function, which can be used to test the specific form of trend. A simulation-based procedure is proposed to implement the SCB, and simulation and real data analysis illustrate the finite sample performance.

Suggested Citation

  • Zhong, Chen, 2024. "Oracle-efficient estimation and trend inference in non-stationary time series with trend and heteroscedastic ARMA error," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:csdana:v:193:y:2024:i:c:s016794732400001x
    DOI: 10.1016/j.csda.2024.107917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732400001X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shujie Ma, 2014. "A plug-in the number of knots selector for polynomial spline regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 489-507, September.
    2. Jing Wang, 2012. "Modelling time trend via spline confidence band," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 275-301, April.
    3. Q. Shao & L. J. Yang, 2011. "Autoregressive coefficient estimation in nonparametric analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 587-597, November.
    4. Qiongxia Song & Lijian Yang, 2009. "Spline confidence bands for variance functions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 589-609.
    5. Li Cai & Lijian Yang, 2015. "A smooth simultaneous confidence band for conditional variance function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 632-655, September.
    6. Qiu, D. & Shao, Q. & Yang, L., 2013. "Efficient inference for autoregressive coefficients in the presence of trends," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 40-53.
    7. Chen Zhong & Lijian Yang, 2021. "Simultaneous confidence bands for comparing variance functions of two samples based on deterministic designs," Computational Statistics, Springer, vol. 36(2), pages 1197-1218, June.
    8. Jiangyan Wang & Fuxia Cheng & Lijian Yang, 2013. "Smooth simultaneous confidence bands for cumulative distribution functions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 395-407, June.
    9. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
    10. Zening Song & Lijian Yang, 2022. "Statistical inference for ARMA time series with moving average trend," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 34(2), pages 357-376, April.
    11. Peter Hall & Ingrid Van Keilegom, 2003. "Using difference‐based methods for inference in nonparametric regression with time series errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 443-456, May.
    12. Guanqun Cao & Lijian Yang & David Todem, 2012. "Simultaneous inference for the mean function based on dense functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 359-377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Lucas Ferreira dos Santos & Allefe Jardel Chagas Vaz & Yslene Rocha Kachba & Sergio Luiz Stevan & Thiago Antonini Alves & Hugo Valadares Siqueira, 2024. "Linear Ensembles for WTI Oil Price Forecasting," Energies, MDPI, vol. 17(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangyan & Gu, Lijie & Yang, Lijian, 2022. "Oracle-efficient estimation for functional data error distribution with simultaneous confidence band," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    2. Jie Li & Jiangyan Wang & Lijian Yang, 2022. "Kolmogorov–Smirnov simultaneous confidence bands for time series distribution function," Computational Statistics, Springer, vol. 37(3), pages 1015-1039, July.
    3. Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
    4. Yuanyuan Zhang & Lijian Yang, 2018. "A smooth simultaneous confidence band for correlation curve," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 247-269, June.
    5. Chen Zhong & Lijian Yang, 2021. "Simultaneous confidence bands for comparing variance functions of two samples based on deterministic designs," Computational Statistics, Springer, vol. 36(2), pages 1197-1218, June.
    6. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
    7. Li Cai & Lisha Li & Simin Huang & Liang Ma & Lijian Yang, 2020. "Oracally efficient estimation for dense functional data with holiday effects," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 282-306, March.
    8. Lijie Gu & Suojin Wang & Lijian Yang, 2019. "Simultaneous confidence bands for the distribution function of a finite population in stratified sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 983-1005, August.
    9. Jiangyan Wang & Suojin Wang & Lijian Yang, 2016. "Simultaneous confidence bands for the distribution function of a finite population and of its superpopulation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 692-709, December.
    10. Gu, Lijie & Wang, Suojin & Yang, Lijian, 2021. "Smooth simultaneous confidence band for the error distribution function in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    11. Li Cai & Suojin Wang, 2021. "Global statistical inference for the difference between two regression mean curves with covariates possibly partially missing," Statistical Papers, Springer, vol. 62(6), pages 2573-2602, December.
    12. Kun Huang & Sijie Zheng & Lijian Yang, 2022. "Inference for dependent error functional data with application to event-related potentials," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1100-1120, December.
    13. Dalla, Violetta & Giraitis, Liudas & Robinson, Peter M., 2020. "Asymptotic theory for time series with changing mean and variance," Journal of Econometrics, Elsevier, vol. 219(2), pages 281-313.
    14. L. Tang & Q. Shao, 2014. "Efficient Estimation For Periodic Autoregressive Coefficients Via Residuals," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 378-389, July.
    15. Benny Ren & Ian Barnett, 2022. "Autoregressive mixture models for clustering time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 918-937, November.
    16. Cao, Guanqun & Wang, Li, 2018. "Simultaneous inference for the mean of repeated functional data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 279-295.
    17. Q. Shao, 2023. "Simultaneous Confidence Band Approach for Comparison of COVID-19 Case Counts," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 372-383, July.
    18. Yanchun Jin, 2016. "Nonparametric tests for the effect of treatment on conditional variance," KIER Working Papers 948, Kyoto University, Institute of Economic Research.
    19. Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
    20. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:193:y:2024:i:c:s016794732400001x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.