IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v194y2024ics0167947324000252.html
   My bibliography  Save this article

A stochastic process representation for time warping functions

Author

Listed:
  • Ma, Yijia
  • Zhou, Xinyu
  • Wu, Wei

Abstract

Time warping function provides a mathematical representation to measure phase variability in functional data. Recent studies have developed various approaches to estimate optimal warping between functions. However, a principled, linear, generative representation on time warping functions is still under-explored. This is highly challenging because the warping functions are non-linear in the conventional L2 space. To address this problem, a new linear warping space is defined and a stochastic process representation is proposed to characterize time warping functions. The key is to define an inner-product structure on the time warping space, followed by a transformation which maps the warping functions into a sub-space of the L2 space. With certain constraints on the warping functions, this transformation is an isometric isomorphism. In the transformed space, the L2 basis in the Hilbert space is adopted for representation, which can be easily utilized to generate time warping functions by using different types of stochastic process. The effectiveness of this representation is demonstrated through its use as a new penalty in the penalized function registration, accompanied by an efficient gradient method to minimize the cost function. The new penalized method is illustrated through simulations that properly characterize nonuniform and correlated constraints in the time domain. Furthermore, this representation is utilized to develop a boxplot for warping functions, which can estimate templates and identify warping outliers. Finally, this representation is applied to a Covid-19 dataset to construct boxplots and identify states with outlying growth patterns.

Suggested Citation

  • Ma, Yijia & Zhou, Xinyu & Wu, Wei, 2024. "A stochastic process representation for time warping functions," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:csdana:v:194:y:2024:i:c:s0167947324000252
    DOI: 10.1016/j.csda.2024.107941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000252
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    2. Daniel Gervini & Theo Gasser, 2004. "Self‐modelling warping functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 959-971, November.
    3. Daniel Gervini, 2015. "Warped functional regression," Biometrika, Biometrika Trust, vol. 102(1), pages 1-14.
    4. Weiyi Xie & Sebastian Kurtek & Karthik Bharath & Ying Sun, 2017. "A Geometric Approach to Visualization of Variability in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 979-993, July.
    5. Derek Tucker, J. & Shand, Lyndsay & Chowdhary, Kenny, 2021. "Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    2. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    3. Derek Tucker, J. & Shand, Lyndsay & Chowdhary, Kenny, 2021. "Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    4. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    5. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    6. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    7. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    8. Donatello Telesca & Lurdes Y.T. Inoue & Mauricio Neira & Ruth Etzioni & Martin Gleave & Colleen Nelson, 2009. "Differential Expression and Network Inferences through Functional Data Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 793-804, September.
    9. Bulté, Matthieu & Sørensen, Helle, 2024. "Medoid splits for efficient random forests in metric spaces," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    10. Grith, Maria & Härdle, Wolfgang Karl & Park, Juhyun, 2009. "Shape invariant modelling pricing kernels and risk aversion," SFB 649 Discussion Papers 2009-041, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    12. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    13. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    14. Cody Carroll & Hans‐Georg Müller, 2023. "Latent deformation models for multivariate functional data and time‐warping separability," Biometrics, The International Biometric Society, vol. 79(4), pages 3345-3358, December.
    15. A. K. S. Alshabani & I. L. Dryden & C. D. Litton & J. Richardson, 2007. "Bayesian analysis of human movement curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 415-428, August.
    16. Moritz Herrmann & Fabian Scheipl, 2021. "A Geometric Perspective on Functional Outlier Detection," Stats, MDPI, vol. 4(4), pages 1-41, November.
    17. Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    18. Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    19. Jorge R. Sosa Donoso & Miguel Flores & Salvador Naya & Javier Tarrío-Saavedra, 2023. "Local Correlation Integral Approach for Anomaly Detection Using Functional Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    20. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:194:y:2024:i:c:s0167947324000252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.