IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i2p331-346..html
   My bibliography  Save this article

Testing conditional mean independence for functional data

Author

Listed:
  • C E Lee
  • X Zhang
  • X Shao

Abstract

SummaryWe propose a new nonparametric conditional mean independence test for a response variable $Y$ and a predictor variable $X$ where either or both can be function-valued. Our test is built on a new metric, the so-called functional martingale difference divergence, which fully characterizes the conditional mean dependence of $Y$ given $X$ and extends the martingale difference divergence proposed by Shao & Zhang (2014). We define an unbiased estimator of functional martingale difference divergence by using a $\mathcal{U}$-centring approach, and we obtain its limiting null distribution under mild assumptions. Since the limiting null distribution is not pivotal, we use the wild bootstrap method to estimate the critical value and show the consistency of the bootstrap test. Our test can detect the local alternative which approaches the null at the rate of $n^{-1/2}$ with a nontrivial power, where $n$ is the sample size. Unlike the three tests developed by Kokoszka et al. (2008), Lei (2014) and Patilea et al. (2016), our test does not require a finite-dimensional projection or assume a linear model, and it does not involve any tuning parameters. Promising finite-sample performance is demonstrated via simulations, and a real-data illustration is used to compare our test with existing ones.

Suggested Citation

  • C E Lee & X Zhang & X Shao, 2020. "Testing conditional mean independence for functional data," Biometrika, Biometrika Trust, vol. 107(2), pages 331-346.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:331-346.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz070
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    2. Lai, Tingyu & Zhang, Zhongzhan & Wang, Yafei, 2021. "A kernel-based measure for conditional mean dependence," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:331-346.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.