IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i2d10.1007_s11336-023-09908-7.html
   My bibliography  Save this article

Detecting Changes in Correlation Networks with Application to Functional Connectivity of fMRI Data

Author

Listed:
  • Changryong Baek

    (Sungkyunkwan University)

  • Benjamin Leinwand

    (Stevens institute of technology)

  • Kristen A. Lindquist

    (University of North Carolina at Chapel Hill)

  • Seok-Oh Jeong

    (Hankuk University of Foreign Studies)

  • Joseph Hopfinger

    (University of North Carolina at Chapel Hill)

  • Katheleen M. Gates

    (University of North Carolina at Chapel Hill)

  • Vladas Pipiras

    (University of North Carolina at Chapel Hill)

Abstract

Research questions in the human sciences often seek to answer if and when a process changes across time. In functional MRI studies, for instance, researchers may seek to assess the onset of a shift in brain state. For daily diary studies, the researcher may seek to identify when a person’s psychological process shifts following treatment. The timing and presence of such a change may be meaningful in terms of understanding state changes. Currently, dynamic processes are typically quantified as static networks where edges indicate temporal relations among nodes, which may be variables reflecting emotions, behaviors, or brain activity. Here we describe three methods for detecting changes in such correlation networks from a data-driven perspective. Networks here are quantified using the lag-0 pair-wise correlation (or covariance) estimates as the representation of the dynamic relations among variables. We present three methods for change point detection: dynamic connectivity regression, max-type method, and a PCA-based method. The change point detection methods each include different ways to test if two given correlation network patterns from different segments in time are significantly different. These tests can also be used outside of the change point detection approaches to test any two given blocks of data. We compare the three methods for change point detection as well as the complementary significance testing approaches on simulated and empirical functional connectivity fMRI data examples.

Suggested Citation

  • Changryong Baek & Benjamin Leinwand & Kristen A. Lindquist & Seok-Oh Jeong & Joseph Hopfinger & Katheleen M. Gates & Vladas Pipiras, 2023. "Detecting Changes in Correlation Networks with Application to Functional Connectivity of fMRI Data," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 636-655, June.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:2:d:10.1007_s11336-023-09908-7
    DOI: 10.1007/s11336-023-09908-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-023-09908-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-023-09908-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Yves Pitarakis, 2004. "Least squares estimation and tests of breaks in mean and variance under misspecification," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 32-54, June.
    2. Tony Cai & Weidong Liu & Yin Xia, 2013. "Two-Sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 265-277, March.
    3. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    4. Han, Xu & Inoue, Atsushi, 2015. "Tests For Parameter Instability In Dynamic Factor Models," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1117-1152, October.
    5. Jushan Bai, 2000. "Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 303-339, November.
    6. Ryan Warnick & Michele Guindani & Erik Erhardt & Elena Allen & Vince Calhoun & Marina Vannucci, 2018. "A Bayesian Approach for Estimating Dynamic Functional Network Connectivity in fMRI Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 134-151, January.
    7. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    2. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    3. Duan, Jiangtao & Bai, Jushan & Han, Xu, 2023. "Quasi-maximum likelihood estimation of break point in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 233(1), pages 209-236.
    4. Zijun Wang, 2006. "The joint determination of the number and the type of structural changes," Economics Letters, Elsevier, vol. 93(2), pages 222-227, November.
    5. Chulwoo Han & Abderrahim Taamouti, 2017. "Partial Structural Break Identification," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(2), pages 145-164, April.
    6. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    7. Yan Qian & Zijun Wang, 2021. "A model selection approach to jointly testing for structural breaks and cointegration with application to the Eurocurrency interest rates market," Empirical Economics, Springer, vol. 61(2), pages 799-825, August.
    8. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    9. Neil Kellard & Denise Osborn & Jerry Coakley & Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2015. "Structural Break Inference Using Information Criteria in Models Estimated by Two-Stage Least Squares," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 741-762, September.
    10. Altansukh, Gantungalag & Becker, Ralf & Bratsiotis, George J. & Osborn, Denise R., 2017. "What is the Globalisation of Inflation?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 74, pages 1-27.
    11. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2013. "Inference on Structural Breaks using Information Criteria," Manchester School, University of Manchester, vol. 81, pages 54-81, October.
    12. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    13. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    14. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.
    15. Byungsoo Kim & Junmo Song & Changryong Baek, 2021. "Robust test for structural instability in dynamic factor models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 821-853, August.
    16. Sugita, Katsuhiro & 杉田, 勝弘, 2006. "Bayesian Analysis of Dynamic Multivariate Models with Multiple Structural Breaks," Discussion Papers 2006-14, Graduate School of Economics, Hitotsubashi University.
    17. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    18. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    19. Devi, P. Indira & Shanmugam, K.R. & Jayasree, M.G., 2012. "Compensating Wages for Occupational Risks of Farm Workers in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-12.
    20. Gil-Alana, Luis A. & Dadgar, Yadollah & Nazari, Rouhollah, 2020. "An analysis of the OPEC and non-OPEC position in the World Oil Market: A fractionally integrated approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:2:d:10.1007_s11336-023-09908-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.